A306844
Number of anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 7, 14, 36, 83, 212, 532, 1379, 3577, 9444, 25019, 66943, 179994, 487031, 1323706, 3614622, 9907911
Offset: 1
The a(1) = 1 through a(6) = 14 anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(o(((o))))
(((((o)))))
Cf.
A324694,
A324695,
A324738,
A324741,
A324743,
A324751,
A324754,
A324756,
A324758,
A324759,
A324764.
-
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A324844
Number of unlabeled rooted trees with n nodes where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 32, 71, 170, 406, 1002, 2469, 6204, 15644, 39871, 102116, 263325, 682079, 1775600, 4640220
Offset: 1
The a(1) = 1 through a(6) = 13 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (o(oo)) (o(ooo))
(((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) ((o(oo)))
((((o)))) (o((oo)))
(oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
The Matula-Goebel numbers of these trees are given by
A324845.
Cf.
A324694,
A324738,
A324744,
A324749,
A324754,
A324759,
A324765,
A324768,
A324838,
A324843,
A324846,
A324847,
A324848,
A324849.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[!submultQ[b,#],{b,DeleteCases[#,{}]}]&];
Table[Length[rallt[n]],{n,10}]
A324744
Number of maximal subsets of {1...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 8, 11, 11, 22, 22, 22, 22, 28, 28, 44, 44, 52, 52, 76, 76, 88, 88, 96, 96, 184, 184, 240, 240, 264, 264, 296, 296, 592, 592, 592, 592, 728, 728, 1456, 1456, 1456, 1456, 2912, 2912, 3168, 3168, 3168, 3168, 5568, 5568, 5568, 5568
Offset: 0
The a(1) = 1 through a(8) = 6 maximal subsets:
{1} {1} {2} {1,3} {1,3} {1,3,6} {3,4,6} {1,3,6,7}
{2} {1,3} {2,4} {1,5} {1,5,6} {1,3,6,7} {1,5,6,7}
{3,4} {3,4} {3,4,6} {1,5,6,7} {3,4,6,8}
{2,4,5} {2,4,5,6} {2,4,5,6} {3,6,7,8}
{2,5,6,7} {2,4,5,6,8}
{2,5,6,7,8}
The non-maximal case is
A324738. The case for subsets of {2...n} is
A324762.
Cf.
A000720,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A290822,
A304360,
A306844,
A320426,
A324764.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,0,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019
A324838
Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1
The a(1) = 1 through a(6) = 10 rooted trees:
o ((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
Cf.
A324694,
A324696,
A324704,
A324738,
A324744,
A324758,
A324759,
A324765,
A324768,
A324771,
A324839,
A324840,
A324844,
A324846.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]
A324759
Heinz numbers of integer partitions containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 73, 74, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
The subset version is
A324738, with maximal case
A324744. The strict integer partition version is
A324749. The integer partition version is
A324754. An infinite version is
A324694.
Cf.
A000720,
A001221,
A007097,
A056239,
A112798,
A276625,
A289509,
A290822,
A306844,
A324695,
A324750,
A324755,
A324760.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[DeleteCases[primeMS[#],1],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]
A324737
Number of subsets of {2...n} containing every element of {2...n} whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 6, 8, 16, 24, 48, 84, 168, 216, 432, 648, 1296, 2448, 4896, 6528, 13056, 19584, 39168, 77760, 155520, 229248, 458496, 790272, 1580544, 3128832, 6257664, 9386496, 18772992, 24081408, 48162816, 95938560, 191877120, 378335232, 756670464, 1135005696, 2270011392
Offset: 1
The a(1) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {}
{2} {3} {3} {4} {4}
{2,3} {4} {5} {5}
{2,3} {3,5} {6}
{3,4} {4,5} {3,5}
{2,3,4} {2,3,5} {4,5}
{3,4,5} {4,6}
{2,3,4,5} {5,6}
{2,3,5}
{3,4,5}
{3,5,6}
{4,5,6}
{2,3,4,5}
{2,3,5,6}
{3,4,5,6}
{2,3,4,5,6}
An example for n = 15 is {2, 3, 5, 8, 9, 10, 11, 15}. The numbers from 2 to 15 with all prime indices in the subset are {3, 5, 9, 11, 15}, which all belong to the subset, as required.
Cf.
A000720,
A001221,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[2,n]],Function[set,SubsetQ[set,Select[Range[2,n],SubsetQ[set,PrimePi/@First/@FactorInteger[#]]&]]]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k, b)->if(k>#p, 1, my(t=self()(k+1, b+(1<Andrew Howroyd, Aug 24 2019
A324754
Number of integer partitions of n containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 7, 8, 11, 12, 19, 19, 30, 34, 46, 50, 71, 76, 104, 119, 151, 171, 225, 247, 315, 360, 446, 504, 629, 703, 867, 986, 1192, 1346, 1636, 1837, 2204, 2500, 2965, 3348, 3980, 4475, 5276, 5963, 6973, 7852, 9194, 10335, 12009, 13536, 15650, 17589
Offset: 0
The a(1) = 1 through a(8) = 11 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (43) (44)
(31) (11111) (42) (52) (62)
(1111) (51) (61) (71)
(222) (331) (422)
(3111) (511) (611)
(111111) (31111) (2222)
(1111111) (3311)
(5111)
(311111)
(11111111)
Cf.
A000837,
A001462,
A007097,
A051424,
A112798,
A276625,
A290822,
A304360,
A306844,
A324695,
A324750,
A324755,
A324760.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
A324762
Number of maximal subsets of {2...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 40, 40, 52, 52, 64, 64, 72, 72, 144, 144, 176, 176, 200, 200, 232, 232, 464, 464, 464, 464, 536, 536, 1072, 1072, 1072, 1072, 2144, 2144, 2400, 2400, 2400, 2400, 4800, 4800, 4800, 4800, 4800
Offset: 1
The a(2) = 1 through a(9) = 6 maximal subsets:
{2} {2} {2,4} {3,4} {3,4,6} {3,4,6} {3,4,6,8} {2,4,5,6,8}
{3} {3,4} {2,4,5} {2,4,5,6} {3,6,7} {3,6,7,8} {2,5,6,7,8}
{2,4,5,6} {2,4,5,6,8} {3,4,6,8,9}
{2,5,6,7} {2,5,6,7,8} {3,6,7,8,9}
{4,5,6,8,9}
{5,6,7,8,9}
The non-maximal version is
A324739.
The version for subsets of {1...n} is
A324744.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019
A324739
Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1
The a(1) = 1 through a(6) = 20 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {2,6}
{2,4,5} {3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324762. The case of subsets of {1...n} is
A324738. The strict integer partition version is
A324750. The integer partition version is
A324755. The Heinz number version is
A324760. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324749
Number of strict integer partitions of n containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 4, 3, 4, 6, 6, 8, 11, 10, 14, 14, 19, 21, 26, 28, 35, 38, 44, 50, 60, 65, 79, 88, 98, 113, 131, 144, 165, 185, 211, 234, 268, 297, 334, 374, 420, 470, 525, 584, 649, 727, 801, 902, 998, 1100, 1220, 1357, 1500, 1657, 1833, 2029, 2220, 2462
Offset: 0
The a(0) = 1 through a(10) = 6 strict integer partitions:
() (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,1) (4,2) (4,3) (6,2) (5,4) (6,4)
(5,1) (5,2) (7,1) (6,3) (7,3)
(6,1) (7,2) (8,2)
(9,1)
(6,3,1)
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
Showing 1-10 of 12 results.
Comments