cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324813 Numbers n for which A156552(n) is a square or a twice a square.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 17, 19, 21, 23, 29, 31, 37, 41, 43, 47, 50, 53, 55, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, 98, 101, 103, 107, 109, 113, 127, 131, 137, 139, 147, 149, 151, 154, 157, 163, 167, 173, 179, 181, 187, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263, 266, 269, 271, 277, 281, 283, 293, 307
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2019

Keywords

Comments

Union of {1} and sequence A005940(1+A028982(n)), n >= 1, sorted into ascending order.
After the initial 1, gives the positions of ones in A324885.

Crossrefs

Cf. A005940, A028982, A156552, A324823 (characteristic function for terms > 1), A324825, A324885.
Cf. A000040, A324812 (subsequences), A324814.

Programs

  • Mathematica
    Select[Range@ 320, AnyTrue[{#, #/2}, IntegerQ@ Sqrt@ # &] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &] (* Michael De Vlieger, Mar 27 2019 *)
  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth
    A324823(n) = if(1==n,0, n=A156552(n); (issquare(n) || (!(n%2) && issquare(n/2))));
    for(n=1, oo, if((1==n)||A324823(n), print1(n, ", ")));
    
  • PARI
    is(n) = { n = A156552(n); n == 0 || n >>= (valuation(n, 2)%2); issquare(n); }; \\ David A. Corneth, Mar 16 2019