A324764
Number of anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1
The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
(o((o))) ((o((o)))) (o((o(o))))
((((o)))) (o(((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o)(((o))))
((o(((o)))))
(o((((o)))))
((((((o))))))
Cf.
A324694,
A324751,
A324756,
A324758,
A324765,
A324767,
A324768,
A324770,
A324839,
A324840,
A324844.
-
idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A324838
Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1
The a(1) = 1 through a(6) = 10 rooted trees:
o ((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
Cf.
A324694,
A324696,
A324704,
A324738,
A324744,
A324758,
A324759,
A324765,
A324768,
A324771,
A324839,
A324840,
A324844,
A324846.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]
A324767
Number of recursively anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 9, 17, 33, 63, 126, 254, 511, 1039, 2124, 4371, 9059, 18839, 39339, 82385, 173111, 364829, 771010, 1633313
Offset: 1
The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees:
(((o))) (o((o))) ((o((o)))) (((o((o))))) ((o)(o((o))))
((((o)))) (o(((o)))) ((o)(((o)))) (o((o((o)))))
(((((o))))) ((o(((o))))) ((((o((o))))))
(o((((o))))) (((o)(((o)))))
((((((o)))))) (((o(((o))))))
((o)((((o)))))
((o((((o))))))
(o(((((o))))))
(((((((o)))))))
-
iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&&Intersection[Union@@#,#]=={}&];
Table[Length[iallt[n]],{n,10}]
A324770
Number of fully anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 13, 27, 58, 128, 286, 640, 1452, 3308, 7594, 17512, 40591, 94449, 220672
Offset: 1
The a(1) = 1 through a(7) = 6 fully anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
((((o)))) ((o((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o(((o)))))
((((((o))))))
-
idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
Table[Length[Select[idall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]
Showing 1-4 of 4 results.
Comments