cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324891 a(n) = sigma(A170818(n)), where A170818(n) is the part of n composed of prime factors of form 4k+1.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 14, 1, 6, 1, 18, 1, 1, 6, 1, 1, 1, 1, 31, 14, 1, 1, 30, 6, 1, 1, 1, 18, 6, 1, 38, 1, 14, 6, 42, 1, 1, 1, 6, 1, 1, 1, 1, 31, 18, 14, 54, 1, 6, 1, 1, 30, 1, 6, 62, 1, 1, 1, 84, 1, 1, 18, 1, 6, 1, 1, 74, 38, 31, 1, 1, 14, 1, 6, 1, 42, 1, 1, 108, 1, 30, 1, 90, 6, 14, 1, 1, 1, 6, 1, 98, 1, 1, 31, 102, 18, 1, 14, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 27 2019

Keywords

Crossrefs

Programs

  • PARI
    A324891(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, ((f[i,1]^(1+f[i,2]))-1)/(f[i,1]-1))); };
    
  • PARI
    A170818(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, f[i, 1])^f[i, 2]); }; \\ From A170818
    A324891(n) = sigma(A170818(n));

Formula

Multiplicative with a(p^e) = (p^(e+1) - 1)/(p-1) if p == 1 (mod 4), otherwise a(p^e) = 1.
a(n) = A000203(A170818(n)).
a(n) = A000593(n) / A324893(n).