cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324897 Odd numbers k such that A318458(k) (bitwise-AND of k and sigma(k)-k) is equal to k.

Original entry on oeis.org

7425, 76545, 92565, 236925, 831105, 954765, 1401345, 2011905, 2048445, 2129985, 2253825, 2445345, 2621745, 2974725, 3283245, 3847725, 5709825, 6447105, 8422785, 8503425, 8945685, 10781505, 12488385, 13470345, 14322945, 15213825, 15340545, 19470465, 19502145, 20075265, 22749825, 25740225, 25756605, 26215245, 27009045
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2019

Keywords

Comments

If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 16 terms factored:
7425 = 3^3 * 5^2 * 11,
76545 = 3^7 * 5 * 7,
92565 = 3^2 * 5 * 11^2 * 17,
236925 = 3^6 * 5^2 * 13,
831105 = 3^2 * 5 * 11 * 23 * 73,
954765 = 3^2 * 5 * 7^2 * 433,
1401345 = 3^2 * 5 * 11 * 19 * 149,
2011905 = 3^3 * 5 * 7 * 2129,
2048445 = 3^2 * 5 * 7^2 * 929,
2129985 = 3^2 * 5 * 11 * 13 * 331,
2253825 = 3^5 * 5^2 * 7 * 53,
2445345 = 3^2 * 5 * 7^2 * 1109,
2621745 = 3^2 * 5 * 7^2 * 29 * 41,
2974725 = 3^4 * 5^2 * 13 * 113,
3283245 = 3^2 * 5 * 7^2 * 1489,
3847725 = 3^2 * 5^2 * 7^2 * 349.

Crossrefs

Subsequence of A324649.
Cf. A318458, A324647, A324898 (a subsequence).

Programs