A324969 Number of unlabeled rooted identity trees with n vertices whose non-leaf terminal subtrees are all different.
1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155
Offset: 1
Examples
The a(1) = 1 through a(7) = 8 trees: o (o) ((o)) (o(o)) ((o(o))) (o(o(o))) ((o(o(o)))) (((o))) (o((o))) (((o(o)))) (o((o(o)))) ((((o)))) ((o((o)))) (o(o((o)))) (o(((o)))) ((((o(o))))) (((((o))))) (((o((o))))) ((o(((o))))) (o((((o))))) ((((((o)))))) G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 13*x^8 + ... - _Michael Somos_, Nov 22 2019
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 21.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 11.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[1] cat [Fibonacci(n-1): n in [2..50]]; // G. C. Greubel, Oct 24 2023
-
Mathematica
(* First program *) durtid[n_]:= Join@@Table[Select[Union[Sort/@Tuples[durtid/@ptn]], UnsameQ@@#&&UnsameQ@@Cases[#, {}, {0,Infinity}]&],{ptn, IntegerPartitions[n-1]}]; Table[Length[durtid[n]],{n,15}] (* Second program *) Join[{1}, Fibonacci[Range[50]]] (* G. C. Greubel, Oct 24 2023 *)
-
PARI
{a(n) = if( n<=1, n==1, fibonacci(n-1))}; /* Michael Somos, Nov 22 2019 */
-
SageMath
[int(n==1) +fibonacci(n-1) for n in range(1,51)] # G. C. Greubel, Oct 24 2023
Formula
From Michael Somos, Nov 22 2019: (Start)
G.f.: x*(1 - x^2) / (1 - x - x^2) = x*(1 + x/(1 - x/(1 - x/(1 + x)))).
a(n) = A000045(n-1) if n>=2. (End)
E.g.f.: -1 + x + exp(x/2)*(cosh(sqrt(5)*x/2) - (1/sqrt(5))*sinh(sqrt(5)*x/2)). - G. C. Greubel, Oct 24 2023
Extensions
More terms from Jinyuan Wang, Jun 27 2020
Comments