cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324973 Special polygonal numbers.

Original entry on oeis.org

6, 15, 66, 70, 91, 190, 231, 435, 561, 703, 715, 782, 861, 946, 1045, 1105, 1426, 1653, 1729, 1770, 1785, 1794, 1891, 2035, 2278, 2465, 2701, 2821, 2926, 3059, 3290, 3367, 3486, 3655, 4371, 4641, 4830, 5005, 5083, 5151, 5365, 5551, 5565, 5995, 6441, 6545, 6601
Offset: 1

Views

Author

Keywords

Comments

Squarefree polygonal numbers P(r,p) = (p^2*(r-2)-p*(r-4))/2 whose greatest prime factor is p >= 3, and whose rank (or order) is r >= 3 (see A324974).
The Carmichael numbers A002997 and primary Carmichael numbers A324316 are subsequences. See Kellner and Sondow 2019.

Examples

			P(3,5) = 15 is squarefree, and its greatest prime factor is 5, so 15 is a member.
More generally, if p is an odd prime and P(3,p) is squarefree, then P(3,p) is a member, since P(3,p) = (p^2+p)/2 = p*(p+1)/2, so p is its greatest prime factor.
CAUTION: P(6,7) = 91 = 7*13 is a member even though 7 is NOT its greatest prime factor, as P(6,7) = P(3,13) and 13 is its greatest prime factor.
		

Crossrefs

Subsequence of A324972 = intersection of A005117 and A090466.
A002997, A324316, A324319 and A324320 are subsequences.

Programs

  • Mathematica
    GPF[n_] := Last[Select[Divisors[n], PrimeQ]];
    T = Select[Flatten[Table[{p, (p^2*(r - 2) - p*(r - 4))/2}, {p, 3, 150}, {r, 3, 100}], 1], SquareFreeQ[Last[#]] && First[#] == GPF[Last[#]] &];
    Take[Union[Table[Last[t], {t, T}]], 47]
  • PARI
    is(k) = if(issquarefree(k) && k>1, my(p=vecmax(factor(k)[, 1]), r); p>2 && (r=2*(k/p-1)/(p-1)) && denominator(r)==1, 0); \\ Jinyuan Wang, Feb 18 2021

Extensions

Several missing terms inserted by Jinyuan Wang, Feb 18 2021