A324973 Special polygonal numbers.
6, 15, 66, 70, 91, 190, 231, 435, 561, 703, 715, 782, 861, 946, 1045, 1105, 1426, 1653, 1729, 1770, 1785, 1794, 1891, 2035, 2278, 2465, 2701, 2821, 2926, 3059, 3290, 3367, 3486, 3655, 4371, 4641, 4830, 5005, 5083, 5151, 5365, 5551, 5565, 5995, 6441, 6545, 6601
Offset: 1
Keywords
Examples
P(3,5) = 15 is squarefree, and its greatest prime factor is 5, so 15 is a member. More generally, if p is an odd prime and P(3,p) is squarefree, then P(3,p) is a member, since P(3,p) = (p^2+p)/2 = p*(p+1)/2, so p is its greatest prime factor. CAUTION: P(6,7) = 91 = 7*13 is a member even though 7 is NOT its greatest prime factor, as P(6,7) = P(3,13) and 13 is its greatest prime factor.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv preprint, arXiv:1902.10672 [math.NT], 2019-2021.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv preprint, arXiv:1902.11283 [math.NT], 2019-2022.
- Wikipedia, Polygonal number.
Crossrefs
Programs
-
Mathematica
GPF[n_] := Last[Select[Divisors[n], PrimeQ]]; T = Select[Flatten[Table[{p, (p^2*(r - 2) - p*(r - 4))/2}, {p, 3, 150}, {r, 3, 100}], 1], SquareFreeQ[Last[#]] && First[#] == GPF[Last[#]] &]; Take[Union[Table[Last[t], {t, T}]], 47]
-
PARI
is(k) = if(issquarefree(k) && k>1, my(p=vecmax(factor(k)[, 1]), r); p>2 && (r=2*(k/p-1)/(p-1)) && denominator(r)==1, 0); \\ Jinyuan Wang, Feb 18 2021
Extensions
Several missing terms inserted by Jinyuan Wang, Feb 18 2021
Comments