cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324974 Rank of the n-th special polygonal number A324973(n).

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 6, 3, 6, 3, 11, 5, 3, 3, 8, 10, 5, 6, 12, 3, 15, 9, 3, 5, 3, 8, 3, 8, 19, 14, 5, 7, 3, 6, 6, 36, 21, 66, 22, 3, 10, 5, 6, 3, 3, 50, 10, 20, 5, 14, 11, 51, 3, 10, 21, 6, 13, 5, 16, 25, 3, 3, 6, 6, 12, 14, 10, 68, 5, 28, 3, 11, 29, 3, 56, 6, 19
Offset: 1

Views

Author

Keywords

Comments

While two polygonal numbers of different ranks can be equal (e.g., P(6,n) = P(3,2n-1)), that cannot occur for special polygonal numbers, since for fixed p the value of P(r,p) is strictly increasing with r. Thus the rank of a special polygonal number is well-defined.
The Carmichael numbers A002997 and primary Carmichael numbers A324316 are special polygonal numbers (see Kellner and Sondow 2019). Their ranks form the subsequences A324975 and A324976.

Examples

			If m = A324973(4) = 70 = 2*5*7, then p = 7, so a(4) = 2+2*((70/7)-1)/(7-1) = 5.
		

Crossrefs

A324975 and A324976 are subsequences.

Programs

  • Mathematica
    GPF[n_] := Last[Select[Divisors[n], PrimeQ]];
    T = Select[Flatten[Table[{p, (p^2*(r - 2) - p*(r - 4))/2}, {p, 3, 150}, {r, 3, 100}], 1], SquareFreeQ[Last[#]] && First[#] == GPF[Last[#]] &];
    TT = Take[Union[Table[Last[T[[i]]], {i, Length[T]}]], 47];
    Table[2 + 2*(t/GPF[t] - 1)/(GPF[t] - 1), {t, TT}]

Formula

a(n) = 2 + 2*((m/p)-1)/(p-1), where m = A324973(n) and p is its greatest prime factor. (Proof: solve m = P(r,p) = (p^2*(r-2) - p*(r-4))/2 for r.)

Extensions

Several missing terms inserted by and more terms from Jinyuan Wang, Feb 18 2021