cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324987 a(n) = Product_{d|n} (tau(d)*sigma(d)) where tau(k) = the number of divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 6, 8, 126, 12, 2304, 16, 7560, 312, 5184, 24, 8128512, 28, 9216, 9216, 1171800, 36, 21026304, 40, 27433728, 16384, 20736, 48, 234101145600, 1116, 28224, 49920, 65028096, 60, 110075314176, 64, 442940400, 36864, 46656, 36864, 60754075619328, 76, 57600, 50176
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

n divides a(n) for n: 1, 2, 6, 8, 12, 18, 24, 28, 36, 40, 48, 54, 56, 72, 80, 84, 96, 108, 112, 117, ...

Examples

			a(6) = (tau(1)*sigma(1)) * (tau(2)*sigma(2)) * (tau(3)*sigma(3)) * (tau(6)*sigma(6)) = (1*1) * (2*3) * (2*4) * (4*12) = 2304.
		

Crossrefs

Programs

  • Magma
    [&*[NumberOfDivisors(d) * SumOfDivisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    Table[Product[DivisorSigma[0, k]*DivisorSigma[1, k], {k, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Mar 23 2019 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, numdiv(d[k])*sigma(d[k])); \\ Michel Marcus, Mar 23 2019

Formula

a(n) = Product_{d|n} tau(d) * Product_{d|n} sigma(d) = A211776(n) * A206032(n).
a(p) = 2*(p + 1) for p = primes (A000040).
a(n) = Product_{d|n} A064840(d). - Antti Karttunen, Mar 28 2019