cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324988 Palindromes whose number of divisors is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 262, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 424, 434, 454, 474, 484, 494, 505, 515, 535, 545
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

Numbers m such that m and A000005(m) = tau(m) are both in A002113.

Examples

			Number of divisors of palindrome number 22 with divisors 1, 2, 11 and 22 is 4 (palindrome number).
		

Crossrefs

Similar sequences for functions sigma(m) and pod(m): A028986, A324989.
Includes A002385, A046328 and A046329.

Programs

  • Magma
    [n: n in [1..1000] | Intseq(n, 10) eq Reverse(Intseq(n, 10)) and Intseq(NumberOfDivisors(n), 10) eq Reverse(Intseq(NumberOfDivisors(n), 10))]
    
  • Maple
    ispali:= proc(n) local L; L:= convert(n,base,10); L = ListTools:-Reverse(L) end proc:
    select(t -> ispali(t) and ispali(numtheory:-tau(t)), [$1..10000]); # Robert Israel, Mar 26 2019
  • Mathematica
    Select[Range@ 600, And[PalindromeQ@ #, PalindromeQ@ DivisorSigma[0, #]] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    ispal(n) = my(d=digits(n)); Vecrev(d) == d;
    isok(n) = ispal(n) && ispal(numdiv(n)); \\ Michel Marcus, Mar 23 2019

A327324 Palindromes whose number and sum of divisors are both also palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 333, 17571, 1757571, 1787871, 5136315, 518686815, 541626145, 17575757571, 5136813186315, 5136868686315, 5806270726085, 172757272757271, 513636363636315, 17275787578757271, 17578787578787571, 17878787578787871, 51363636363636315
Offset: 1

Views

Author

Jaroslav Krizek, Aug 30 2019

Keywords

Comments

Numbers m such that m, A000005(m) = tau(m) and A000203(m) = sigma(m) are all in A002113.
Corresponding values of tau(a(n)): 1, 2, 2, 3, 2, 2, 6, 4, 4, 4, 8, 8, 8, 4, 8, 8, 8, 4, 8, ...
Corresponding values of sigma(a(n)): 1, 3, 4, 7, 6, 8, 494, 23432, 2343432, 2383832, ...
Intersection of A028986 and A324988.

Examples

			tau(333) = A000005(333) = 6; sigma(333) = A000203(333) = 494.
		

Crossrefs

Programs

  • Magma
    [m: m in [1..1000000] | Intseq(m, 10) eq Reverse(Intseq(m, 10)) and Intseq(NumberOfDivisors(m), 10) eq Reverse(Intseq(NumberOfDivisors(m), 10)) and Intseq(&+[d: d in Divisors(m)], 10) eq Reverse(Intseq(&+[d: d in Divisors(m)], 10))];
    
  • Mathematica
    Select[Range[2*10^6], PalindromeQ[#] && PalindromeQ[DivisorSigma[0, #]] && PalindromeQ[DivisorSigma[1, #]] &] (* Amiram Eldar, Aug 31 2019 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(n) = ispal(n) && ispal(numdiv(n)) && ispal(sigma(n)); \\ Michel Marcus, Sep 02 2019

Extensions

a(20)-a(23) with the help of Daniel Suteu
Showing 1-2 of 2 results.