cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324989 Palindromes whose product of divisors is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 22, 101, 111, 121, 131, 151, 181, 191, 202, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 1001, 1111, 10001, 10201, 10301, 10501, 10601, 11111, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

Numbers m such that m and A007955(m) = pod(m) are both in A002113.
Of 48025 terms < 10^11, all but 30 are prime. - Robert Israel, Apr 23 2019

Examples

			Product of divisors of palindrome number 22 with divisors 1, 2, 11 and 22 is 484 (palindrome number).
		

Crossrefs

Includes A002385.
Similar sequences for functions sigma(m) and tau(m): A028986, A324988.

Programs

  • Magma
    [n: n in [1..100000] | Intseq(n, 10) eq Reverse(Intseq(n, 10)) and Intseq(&*[d: d in Divisors(n)], 10) eq Reverse(Intseq(&*[d: d in Divisors(n)], 10))]
    
  • Maple
    revdigs:= proc(n)
    local L, nL, i;
    L:= convert(n, base, 10);
    nL:= nops(L);
    add(L[i]*10^(nL-i), i=1..nL);
    end:
    pals:= proc(d) local x, y;
      if d::even then [seq(x*10^(d/2)+revdigs(x), x=10^(d/2-1)..10^(d/2)-1)]
      else [seq(seq(x*10^((d+1)/2)+y*10^((d-1)/2)+revdigs(x), y=0..9), x=10^((d-1)/2-1)..10^((d-1)/2)-1)]
      fi
    end proc:
    pals(1):= [$1..9]:
    filter:= proc(n) local v;
      v:= convert(numtheory:-divisors(n),`*`);
      revdigs(v)=v
    end proc:
    seq(op(select(filter, pals(d))),d=1..5); # Robert Israel, Apr 23 2019
  • Mathematica
    Select[Range[10^5], And[PalindromeQ@ #, PalindromeQ[Times @@ Divisors@ #]] &] (* Michael De Vlieger, Mar 24 2019 *)
    Select[Range[17000],AllTrue[{#,Times@@Divisors[#]},PalindromeQ]&] (* Harvey P. Dale, Oct 13 2021 *)
  • PARI
    ispal(n) = my(d=digits(n)); Vecrev(d) == d;
    isok(n) = ispal(n) && ispal(vecprod(divisors(n))); \\ Michel Marcus, Mar 23 2019
    
  • Python
    from math import isqrt
    from itertools import chain, count, islice
    from sympy import divisor_count
    def A324989_gen(): # generator of terms
        return filter(lambda n:(s:=str(isqrt(n)**d if (d:=divisor_count(n)) & 1 else n**(d//2)))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],chain.from_iterable(chain((int((s:=str(d))+s[-2::-1]) for d in range(10**l,10**(l+1))), (int((s:=str(d))+s[::-1]) for d in range(10**l,10**(l+1)))) for l in count(0)))
    A324989_list = list(islice(A324989_gen(),20)) # Chai Wah Wu, Jun 24 2022

A327324 Palindromes whose number and sum of divisors are both also palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 333, 17571, 1757571, 1787871, 5136315, 518686815, 541626145, 17575757571, 5136813186315, 5136868686315, 5806270726085, 172757272757271, 513636363636315, 17275787578757271, 17578787578787571, 17878787578787871, 51363636363636315
Offset: 1

Views

Author

Jaroslav Krizek, Aug 30 2019

Keywords

Comments

Numbers m such that m, A000005(m) = tau(m) and A000203(m) = sigma(m) are all in A002113.
Corresponding values of tau(a(n)): 1, 2, 2, 3, 2, 2, 6, 4, 4, 4, 8, 8, 8, 4, 8, 8, 8, 4, 8, ...
Corresponding values of sigma(a(n)): 1, 3, 4, 7, 6, 8, 494, 23432, 2343432, 2383832, ...
Intersection of A028986 and A324988.

Examples

			tau(333) = A000005(333) = 6; sigma(333) = A000203(333) = 494.
		

Crossrefs

Programs

  • Magma
    [m: m in [1..1000000] | Intseq(m, 10) eq Reverse(Intseq(m, 10)) and Intseq(NumberOfDivisors(m), 10) eq Reverse(Intseq(NumberOfDivisors(m), 10)) and Intseq(&+[d: d in Divisors(m)], 10) eq Reverse(Intseq(&+[d: d in Divisors(m)], 10))];
    
  • Mathematica
    Select[Range[2*10^6], PalindromeQ[#] && PalindromeQ[DivisorSigma[0, #]] && PalindromeQ[DivisorSigma[1, #]] &] (* Amiram Eldar, Aug 31 2019 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(n) = ispal(n) && ispal(numdiv(n)) && ispal(sigma(n)); \\ Michel Marcus, Sep 02 2019

Extensions

a(20)-a(23) with the help of Daniel Suteu
Showing 1-2 of 2 results.