cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324995 Decimal expansion of zeta'(-1, 1/4).

Original entry on oeis.org

0, 9, 3, 5, 6, 7, 8, 6, 8, 9, 7, 0, 2, 6, 1, 0, 6, 1, 1, 8, 6, 3, 3, 6, 0, 7, 1, 6, 4, 7, 4, 4, 6, 3, 1, 0, 0, 6, 1, 5, 2, 1, 0, 8, 6, 0, 3, 8, 3, 5, 9, 5, 4, 0, 5, 2, 3, 5, 6, 5, 6, 8, 0, 5, 7, 2, 6, 0, 6, 8, 7, 1, 6, 7, 8, 4, 3, 1, 8, 6, 2, 0, 2, 6, 5, 9, 7, 3, 4, 3, 6, 1, 7, 3, 4, 7, 1, 0, 9, 1, 6, 9, 5, 4, 0, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			0.093567868970261061186336071647446310061521086038359540523565680572606...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,1/4), 120);
    evalf(-Pi/32 + Psi(1, 1/4)/(32*Pi) - Zeta(1,-1)/8, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 1/4], 10, 120][[1]]
    N[With[{k=1}, -(4^k-1) * BernoulliB[2*k] * Pi / 4^(k+1)/k + (4^(k-1)-1)*BernoulliB[2*k] * Log[2]/k/2^(4*k-1) - (-1)^k*PolyGamma[2*k-1,1/4] / 4 / (8*Pi)^(2*k-1) - (4^k - 2)*Zeta'[1-2*k]/2^(4*k)], 120]
  • PARI
    zetahurwitz'(-1, 1/4) \\ Michel Marcus, Mar 24 2019

Formula

Equals -Pi/32 + PolyGamma(1, 1/4)/(32*Pi) - Zeta'(-1)/8.
A324995 + A324996 = -Zeta'(-1)/4.
Equals A006752/(4*Pi) + log(A074962)/8 - 1/96. - Artur Jasinski, Feb 23 2023

A357597 Decimal expansion of real part of zeta'(0, 1-sqrt(2)).

Original entry on oeis.org

3, 8, 2, 9, 3, 8, 7, 5, 2, 6, 4, 9, 1, 4, 7, 5, 1, 2, 5, 9, 3, 5, 7, 1, 8, 5, 1, 9, 6, 4, 7, 3, 1, 6, 4, 8, 4, 8, 0, 9, 9, 1, 6, 8, 2, 4, 7, 2, 3, 2, 5, 5, 2, 9, 3, 1, 3, 0, 9, 5, 8, 0, 8, 4, 6, 9, 2, 5, 6, 2, 7, 7, 5, 3, 2, 2, 3, 4, 6, 3, 1, 8, 3, 4, 5, 3, 7, 0, 0, 6, 2, 8, 4, 7, 3, 8, 1, 4, 0, 3, 5, 0, 4, 7, 0
Offset: 0

Views

Author

Artur Jasinski, Feb 25 2023

Keywords

Examples

			0.38293875264914751259357185...
		

Crossrefs

Programs

  • Maple
    Re(evalf(Zeta(1, 0, 1 - sqrt(2)), 120)); # Vaclav Kotesovec, Feb 26 2023
  • Mathematica
    RealDigits[N[ArcSinh[1] + Log[Pi/2]/2 + Log[-Csc[Sqrt[2] Pi]/Gamma[Sqrt[2] - 1]], 105]][[1]]
  • PARI
    real(zetahurwitz'(0, 1-sqrt(2))) \\ Vaclav Kotesovec, Feb 26 2023

Formula

Equals arcsinh(1) + log(Pi/2)/2 + log(-csc(Pi*sqrt(2))/Gamma(sqrt(2)-1)).
Equals Re(log(Gamma(1-sqrt(2))/sqrt(2*Pi))).
Equals log(-sqrt(Pi)/(sqrt(2)!*sin(sqrt(2)*Pi))). - Peter Luschny, Feb 26 2023
Showing 1-2 of 2 results.