cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325020 Numbers m such that m*(m-tau(m))/sigma(m) is an integer h where k-tau(k) is the number of nondivisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 2, 6, 22, 28, 76, 84, 90, 96, 170, 216, 248, 252, 496, 520, 532, 588, 672, 700, 852, 864, 1240, 2176, 2448, 2480, 2812, 3360, 6048, 7392, 7584, 8128, 9120, 11480, 12616, 12768, 13832, 14056, 14720, 15456, 19488, 20536, 21216, 27000, 30240, 31584, 31968
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2019

Keywords

Comments

Even perfect numbers from A000396 are terms.
Corresponding values of integers h: 0, 0, 1, 11, 11, 38, 27, 30, 32, 85, 72, 124, 81, ...
Supersequence of A325021 and A325023.

Examples

			28 is a term because 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((n - NumberOfDivisors(n)) * n / SumOfDivisors(n))]
    
  • Mathematica
    Select[Range[10^5], IntegerQ[#1 (#1 - #2)/#3] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(m) = frac(m*(m-numdiv(m))/sigma(m)) == 0; \\ Michel Marcus, Mar 25 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A325020_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if not (n-reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1))*n%s:
                yield n
    A325020_list = list(islice(A325020_gen(),20)) # Chai Wah Wu, Feb 14 2023