cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325021 Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is an integer h, where k-tau(k) is the number of nondivisors of k (A049820), tau(k) is the number of divisors of k (A000005), and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 6, 28, 496, 672, 8128, 30240, 32760, 332640, 695520, 2178540, 17428320, 23569920, 33550336, 45532800, 52141320, 142990848, 164989440, 318729600, 447828480, 481572000, 500860800, 540277920, 623397600, 644271264, 714954240, 995248800, 1047254400, 1307124000
Offset: 1

Views

Author

Jaroslav Krizek, Mar 27 2019

Keywords

Comments

Numbers m such that m*tau(m)/sigma(m) is an integer g and simultaneously m*(m-tau(m))/sigma(m) is an integer h. Corresponding values of integers g: 1, 2, 3, 5, 8, 7, 24, 24, 44, 46, 54, 96, 80, 13, 96, ...
Corresponding values of integers h: 0, 1, 11, 243, 216, 4057, 7536, 8166, 76186, 166589, ...
Even perfect numbers from A000396 are terms.
Complement of A325022 with respect to A001599.
Intersection of A325020 and A001599.

Examples

			Harmonic number 28 is a term because 28*tau(28)/sigma(28) = 28*6/56 = 3 (integer) and simultaneously 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
    
  • Mathematica
    Select[Range[10^6], And[IntegerQ@ HarmonicMean@ #2, IntegerQ[#1 (#1 - #3)/#4]] & @@ Join[{#}, {Divisors@ #}, DivisorSigma[{0, 1}, #]] &] (* Michael De Vlieger, Mar 27 2019 *)
  • PARI
    isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && !frac(m*(m-d)/s); \\ Michel Marcus, Mar 27 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A325021_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if not (n*n%s or reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s):
                yield n
    A325021_list = list(islice(A325021_gen(),10)) # Chai Wah Wu, Feb 14 2023

A325023 Multi-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is an integer h, where k-tau(k) is the number of nondivisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 6, 28, 496, 672, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 14182439040, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 13661860101120, 181742883469056, 6088728021160320
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2019

Keywords

Comments

Numbers m such that sigma(m)/m is an integer f and simultaneously m*tau(m)/sigma(m) is an integer g. Corresponding values of integers f: 1, 2, 2, 2, 3, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, ... Corresponding values of integers g: 0, 1, 11, 243, 216, 4057, 7536, 8166, ...
Complement of A325024 with respect to A007691.
Even perfect numbers from A000396 are terms.
Intersection of A325020 and A007691.
Conjecture: Numbers m such that all values of sigma(m)/m, m*tau(m)/sigma(m) and m*(m-tau(m))/sigma(m) are any integers (f, g, and h respectively). Corresponding values of integers f: 1, 2, 2, 2, 3, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, ... Corresponding values of integers g: 0, 1, 11, 243, 216, 4057, 7536, 8166, ... Corresponding values of integers h: 1, 2, 3, 5, 8, 7, 24, 24, 54, 80, 13, 96, ...

Examples

			Multi-perfect number 28 is a term because 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
    
  • Mathematica
    Select[Range[10^6], And[Mod[#3, #1] == 0, IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(m) = my(s=sigma(m)); (frac(m*(m-numdiv(m))/s) == 0) && (frac(s/m) == 0); \\ Michel Marcus, Mar 25 2019

A325022 Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is not an integer, where k-tau(k) = the number of nondivisors of k (A049820), tau(k) = the number of divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

140, 270, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 360360, 539400, 726180, 753480, 950976, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000, 2845800, 4358600, 4713984, 4754880, 5772200, 6051500
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2019

Keywords

Comments

Numbers m such that sigma(m) divides m*tau(m) but sigma(m) does not divide m*(m-tau(m)).
Complement of A325021 with respect to A001599.

Examples

			140 is a term because 140*(140-tau(140))/sigma(140) = 140*(140-12)/336 = 160/3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
    
  • Mathematica
    Select[Range[10^5], And[IntegerQ@ HarmonicMean@ #4, ! IntegerQ[#1 (#1 - #2)/#3]] & @@ Append[{#}~Join~DivisorSigma[{0, 1}, #], Divisors@ #] &] (* Michael De Vlieger, Mar 30 2019 *)
  • PARI
    isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && frac(m*(m-d)/s); \\ Michel Marcus, Mar 28 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A325022_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if n*n%s and not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
                yield n
    A325022_list = list(islice(A325022_gen(),10)) # Chai Wah Wu, Feb 14 2023

A325024 Multiply-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is not an integer where k-tau(k) is the number of the non-divisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

120, 523776, 459818240, 1476304896, 31998395520, 51001180160, 518666803200, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2019

Keywords

Comments

Numbers m such that m divides sigma(m) but sigma(m) does not divide m*(m-tau(m)).
Complement of A325023 with respect to A007691.

Examples

			120 is a term because 120*(120-tau(120))/sigma(120) = 120*(120-16)/360 = 104/3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
    
  • Mathematica
    Select[Range[10^6], And[Mod[#3, #1] == 0, !IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Amiram Eldar, Jul 10 2019 after Michael De Vlieger at A325023 *)
  • PARI
    isA325024(m) = { my(s=sigma(m)); ((1==denominator(s/m)) && (1!=denominator(m*(m-numdiv(m))/s))); }; \\ Antti Karttunen, May 25 2019
Showing 1-4 of 4 results.