A325021
Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is an integer h, where k-tau(k) is the number of nondivisors of k (A049820), tau(k) is the number of divisors of k (A000005), and sigma(k) is the sum of the divisors of k (A000203).
Original entry on oeis.org
1, 6, 28, 496, 672, 8128, 30240, 32760, 332640, 695520, 2178540, 17428320, 23569920, 33550336, 45532800, 52141320, 142990848, 164989440, 318729600, 447828480, 481572000, 500860800, 540277920, 623397600, 644271264, 714954240, 995248800, 1047254400, 1307124000
Offset: 1
Harmonic number 28 is a term because 28*tau(28)/sigma(28) = 28*6/56 = 3 (integer) and simultaneously 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
-
[n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
-
Select[Range[10^6], And[IntegerQ@ HarmonicMean@ #2, IntegerQ[#1 (#1 - #3)/#4]] & @@ Join[{#}, {Divisors@ #}, DivisorSigma[{0, 1}, #]] &] (* Michael De Vlieger, Mar 27 2019 *)
-
isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && !frac(m*(m-d)/s); \\ Michel Marcus, Mar 27 2019
-
from itertools import count, islice
from math import prod
from functools import reduce
from sympy import factorint
def A325021_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue,1)):
f = factorint(n)
s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
if not (n*n%s or reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s):
yield n
A325021_list = list(islice(A325021_gen(),10)) # Chai Wah Wu, Feb 14 2023
A325023
Multi-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is an integer h, where k-tau(k) is the number of nondivisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).
Original entry on oeis.org
1, 6, 28, 496, 672, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 14182439040, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 13661860101120, 181742883469056, 6088728021160320
Offset: 1
Multi-perfect number 28 is a term because 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
-
[n: n in [1..1000000] | IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
-
Select[Range[10^6], And[Mod[#3, #1] == 0, IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Mar 24 2019 *)
-
isok(m) = my(s=sigma(m)); (frac(m*(m-numdiv(m))/s) == 0) && (frac(s/m) == 0); \\ Michel Marcus, Mar 25 2019
A325022
Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is not an integer, where k-tau(k) = the number of nondivisors of k (A049820), tau(k) = the number of divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).
Original entry on oeis.org
140, 270, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 360360, 539400, 726180, 753480, 950976, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000, 2845800, 4358600, 4713984, 4754880, 5772200, 6051500
Offset: 1
140 is a term because 140*(140-tau(140))/sigma(140) = 140*(140-12)/336 = 160/3.
-
[n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
-
Select[Range[10^5], And[IntegerQ@ HarmonicMean@ #4, ! IntegerQ[#1 (#1 - #2)/#3]] & @@ Append[{#}~Join~DivisorSigma[{0, 1}, #], Divisors@ #] &] (* Michael De Vlieger, Mar 30 2019 *)
-
isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && frac(m*(m-d)/s); \\ Michel Marcus, Mar 28 2019
-
from itertools import count, islice
from math import prod
from functools import reduce
from sympy import factorint
def A325022_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue,1)):
f = factorint(n)
s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
if n*n%s and not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
yield n
A325022_list = list(islice(A325022_gen(),10)) # Chai Wah Wu, Feb 14 2023
A325024
Multiply-perfect numbers m from A007691 such that m*(m-tau(m))/sigma(m) is not an integer where k-tau(k) is the number of the non-divisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).
Original entry on oeis.org
120, 523776, 459818240, 1476304896, 31998395520, 51001180160, 518666803200, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1
120 is a term because 120*(120-tau(120))/sigma(120) = 120*(120-16)/360 = 104/3.
-
[n: n in [1..1000000] | not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
-
Select[Range[10^6], And[Mod[#3, #1] == 0, !IntegerQ[#1 (#1 - #2)/#3]] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Amiram Eldar, Jul 10 2019 after Michael De Vlieger at A325023 *)
-
isA325024(m) = { my(s=sigma(m)); ((1==denominator(s/m)) && (1!=denominator(m*(m-numdiv(m))/s))); }; \\ Antti Karttunen, May 25 2019
Showing 1-4 of 4 results.
Comments