cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325030 a(n) = Product_{d|n} (sigma(d)*pod(d)) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 336, 30, 31104, 56, 322560, 4212, 324000, 132, 84276412416, 182, 1580544, 1944000, 10239344640, 306, 2483164449792, 380, 6096384000000, 9483264, 13799808, 552, 1610547321930095001600, 116250, 31004064, 122821920, 108806975520768, 870
Offset: 1

Views

Author

Jaroslav Krizek, Apr 25 2019

Keywords

Comments

n divides a(n) for all n.

Examples

			a(6) = (sigma(1)*pod(1)) * (sigma(2)*pod(2)) * (sigma(3)*pod(3)) * (sigma(6)*pod(6)) = (1*1) * (3*2) * (4*3) * (12*36) = 31104.
		

Crossrefs

Programs

  • Magma
    [&*[&+ [c: c in Divisors(d)] * &*[c: c in Divisors(d)]: d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    Table[Times@@(DivisorSigma[1,#]Times@@Divisors[#]&/@Divisors[n]),{n,30}] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, my(dd=divisors(d[k])); vecsum(dd)*vecprod(dd)); \\ Michel Marcus, Apr 25 2019

Formula

a(n) = Product_{d|n} sigma(d) * Product_{d|n} pod(d) = A206032(n) * A266265(n).
a(p) = p*(p+1) for p = primes (A000040).