A325091 Heinz numbers of integer partitions of powers of 2.
1, 2, 3, 4, 7, 9, 10, 12, 16, 19, 34, 39, 49, 52, 53, 55, 63, 66, 70, 75, 81, 84, 88, 90, 94, 100, 108, 112, 120, 129, 131, 144, 160, 172, 192, 205, 246, 254, 256, 259, 311, 328, 333, 339, 341, 361, 370, 377, 391, 434, 444, 452, 465, 545, 558, 592, 598, 609, 614
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 4: {1,1} 7: {4} 9: {2,2} 10: {1,3} 12: {1,1,2} 16: {1,1,1,1} 19: {8} 34: {1,7} 39: {2,6} 49: {4,4} 52: {1,1,6} 53: {16} 55: {3,5} 63: {2,2,4} 66: {1,2,5} 70: {1,3,4} 75: {2,3,3} 81: {2,2,2,2}
Crossrefs
Programs
-
Maple
q:= n-> (t-> t=2^ilog2(t))(add(numtheory[pi](i[1])*i[2], i=ifactors(n)[2])): select(q, [$1..1000])[]; # Alois P. Heinz, Mar 28 2019
-
Mathematica
Select[Range[100],#==1||IntegerQ[Log[2,Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]]&]
Comments