cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A325094 Write n as a sum of distinct powers of 2, then take the primes of those powers of 2 and multiply them together.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 21, 42, 19, 38, 57, 114, 133, 266, 399, 798, 53, 106, 159, 318, 371, 742, 1113, 2226, 1007, 2014, 3021, 6042, 7049, 14098, 21147, 42294, 131, 262, 393, 786, 917, 1834, 2751, 5502, 2489, 4978, 7467, 14934, 17423, 34846, 52269, 104538, 6943
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

The sorted sequence is A325093.
For example, 11 = 1 + 2 + 8, so a(11) = prime(1) * prime(2) * prime(8) = 114.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    6: {1,2}
    7: {4}
   14: {1,4}
   21: {2,4}
   42: {1,2,4}
   19: {8}
   38: {1,8}
   57: {2,8}
  114: {1,2,8}
  133: {4,8}
  266: {1,4,8}
  399: {2,4,8}
  798: {1,2,4,8}
   53: {16}
  106: {1,16}
  159: {2,16}
  318: {1,2,16}
  371: {4,16}
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(2^i),i=0..10)]:
    f:= proc(n) local L,i;
      L:= convert(n,base,2);
      mul(P[i]^L[i],i=1..nops(L))
    end proc:
    map(f, [$0..100]); # Robert Israel, Mar 28 2019
  • Mathematica
    Table[Times@@MapIndexed[If[#1==0,1,Prime[2^(#2[[1]]-1)]]&,Reverse[IntegerDigits[n,2]]],{n,0,100}]

A325093 Heinz numbers of integer partitions into distinct powers of 2.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 53, 57, 106, 114, 131, 133, 159, 262, 266, 311, 318, 371, 393, 399, 622, 719, 742, 786, 798, 917, 933, 1007, 1113, 1438, 1619, 1834, 1866, 2014, 2157, 2177, 2226, 2489, 2751, 3021, 3238, 3671, 4314, 4354, 4857, 4978, 5033
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices are powers of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    6: {1,2}
    7: {4}
   14: {1,4}
   19: {8}
   21: {2,4}
   38: {1,8}
   42: {1,2,4}
   53: {16}
   57: {2,8}
  106: {1,16}
  114: {1,2,8}
  131: {32}
  133: {4,8}
  159: {2,16}
  262: {1,32}
  266: {1,4,8}
  311: {64}
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(2^i),i=0..20)]:f:= proc(S,N) option remember;
      if S = [] or S[1]>N then return {1} fi;
      procname(S[2..-1],N) union
        map(t -> S[1]*t, procname(S[2..-1], floor(N/S[1])))end proc:
    sort(convert(f(P, P[20]),list));  # Robert Israel, Mar 28 2019
  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&And@@IntegerQ/@Log[2,Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>PrimePi[p]]]&]
  • PARI
    isp2(q) = (q == 1) || (q == 2) || (ispower(q,,&p) && (p==2));
    isok(n) = {if (issquarefree(n), my(f=factor(n)[,1]); for (k=1, #f, if (! isp2(primepi(f[k])), return (0));); return (1);); return (0);} \\ Michel Marcus, Mar 28 2019

A325092 Heinz numbers of integer partitions of powers of 2 into powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 12, 16, 19, 49, 53, 63, 81, 84, 108, 112, 131, 144, 192, 256, 311, 361, 719, 931, 1197, 1539, 1596, 1619, 2052, 2128, 2401, 2736, 2809, 3087, 3648, 3671, 3969, 4116, 4864, 5103, 5292, 5488, 6561, 6804, 7056, 8161, 8748, 9072, 9408, 11664, 12096
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose prime indices are powers of 2 and whose sum of prime indices is also a power of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
1 is in the sequence because it has prime indices {} with sum 0 = 2^(-infinity).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    7: {4}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   19: {8}
   49: {4,4}
   53: {16}
   63: {2,2,4}
   81: {2,2,2,2}
   84: {1,1,2,4}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  131: {32}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  311: {64}
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(t-> t=2^ilog2(t), (l-> [l[], add(i, i=l)])(
          map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))):
    select(q, [$1..15000])[];  # Alois P. Heinz, Mar 28 2019
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pow2Q[n_]:=IntegerQ[Log[2,n]];
    Select[Range[1000],#==1||pow2Q[Total[primeMS[#]]]&&And@@pow2Q/@primeMS[#]&]
Showing 1-3 of 3 results.