cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050315 Main diagonal of A050314.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 5, 1, 2, 2, 5, 2, 5, 5, 15, 1, 2, 2, 5, 2, 5, 5, 15, 2, 5, 5, 15, 5, 15, 15, 52, 1, 2, 2, 5, 2, 5, 5, 15, 2, 5, 5, 15, 5, 15, 15, 52, 2, 5, 5, 15, 5, 15, 15, 52, 5, 15, 15, 52, 15, 52, 52, 203, 1, 2, 2, 5, 2, 5, 5, 15, 2, 5, 5, 15, 5, 15, 15, 52, 2, 5, 5, 15, 5, 15
Offset: 0

Views

Author

Christian G. Bower, Sep 15 1999

Keywords

Comments

Also, a(n) is the number of odd multinomial coefficients n!/(k_1!...k_m!) with 1 <= k_1 <= ... <= k_m and k_1 + ... + k_m = n. - Pontus von Brömssen, Mar 23 2018
From Gus Wiseman, Mar 30 2019: (Start)
Also the number of strict integer partitions of n with no binary carries. The Heinz numbers of these partitions are given by A325100. A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the a(1) = 1 through a(15) = 15 strict integer partitions with no binary carries are:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (D) (E) (F)
(21) (41) (42) (43) (81) (82) (83) (84) (85) (86) (87)
(52) (92) (94) (A4) (96)
(61) (A1) (C1) (C2) (A5)
(421) (821) (841) (842) (B4)
(C3)
(D2)
(E1)
(843)
(852)
(861)
(942)
(A41)
(C21)
(8421)
(End)

Crossrefs

Programs

  • Maple
    a:= n-> combinat[bell](add(i,i=convert(n, base, 2))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 08 2019
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)
    a[n_] := BellB[DigitCount[n, 2, 1]];
    a /@ Range[0, 100] (* Jean-François Alcover, May 21 2021 *)

Formula

Bell number of number of 1's in binary: a(n) = A000110(A000120(n)).

A325094 Write n as a sum of distinct powers of 2, then take the primes of those powers of 2 and multiply them together.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 21, 42, 19, 38, 57, 114, 133, 266, 399, 798, 53, 106, 159, 318, 371, 742, 1113, 2226, 1007, 2014, 3021, 6042, 7049, 14098, 21147, 42294, 131, 262, 393, 786, 917, 1834, 2751, 5502, 2489, 4978, 7467, 14934, 17423, 34846, 52269, 104538, 6943
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

The sorted sequence is A325093.
For example, 11 = 1 + 2 + 8, so a(11) = prime(1) * prime(2) * prime(8) = 114.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    6: {1,2}
    7: {4}
   14: {1,4}
   21: {2,4}
   42: {1,2,4}
   19: {8}
   38: {1,8}
   57: {2,8}
  114: {1,2,8}
  133: {4,8}
  266: {1,4,8}
  399: {2,4,8}
  798: {1,2,4,8}
   53: {16}
  106: {1,16}
  159: {2,16}
  318: {1,2,16}
  371: {4,16}
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(2^i),i=0..10)]:
    f:= proc(n) local L,i;
      L:= convert(n,base,2);
      mul(P[i]^L[i],i=1..nops(L))
    end proc:
    map(f, [$0..100]); # Robert Israel, Mar 28 2019
  • Mathematica
    Table[Times@@MapIndexed[If[#1==0,1,Prime[2^(#2[[1]]-1)]]&,Reverse[IntegerDigits[n,2]]],{n,0,100}]

A325091 Heinz numbers of integer partitions of powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 10, 12, 16, 19, 34, 39, 49, 52, 53, 55, 63, 66, 70, 75, 81, 84, 88, 90, 94, 100, 108, 112, 120, 129, 131, 144, 160, 172, 192, 205, 246, 254, 256, 259, 311, 328, 333, 339, 341, 361, 370, 377, 391, 434, 444, 452, 465, 545, 558, 592, 598, 609, 614
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose sum of prime indices is a power of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
1 is in the sequence because it has prime indices {} with sum 0 = 2^(-infinity).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   7: {4}
   9: {2,2}
  10: {1,3}
  12: {1,1,2}
  16: {1,1,1,1}
  19: {8}
  34: {1,7}
  39: {2,6}
  49: {4,4}
  52: {1,1,6}
  53: {16}
  55: {3,5}
  63: {2,2,4}
  66: {1,2,5}
  70: {1,3,4}
  75: {2,3,3}
  81: {2,2,2,2}
		

Crossrefs

Programs

  • Maple
    q:= n-> (t-> t=2^ilog2(t))(add(numtheory[pi](i[1])*i[2], i=ifactors(n)[2])):
    select(q, [$1..1000])[];  # Alois P. Heinz, Mar 28 2019
  • Mathematica
    Select[Range[100],#==1||IntegerQ[Log[2,Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]]&]

A325092 Heinz numbers of integer partitions of powers of 2 into powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 12, 16, 19, 49, 53, 63, 81, 84, 108, 112, 131, 144, 192, 256, 311, 361, 719, 931, 1197, 1539, 1596, 1619, 2052, 2128, 2401, 2736, 2809, 3087, 3648, 3671, 3969, 4116, 4864, 5103, 5292, 5488, 6561, 6804, 7056, 8161, 8748, 9072, 9408, 11664, 12096
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose prime indices are powers of 2 and whose sum of prime indices is also a power of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
1 is in the sequence because it has prime indices {} with sum 0 = 2^(-infinity).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    7: {4}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   19: {8}
   49: {4,4}
   53: {16}
   63: {2,2,4}
   81: {2,2,2,2}
   84: {1,1,2,4}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  131: {32}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  311: {64}
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(t-> t=2^ilog2(t), (l-> [l[], add(i, i=l)])(
          map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))):
    select(q, [$1..15000])[];  # Alois P. Heinz, Mar 28 2019
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pow2Q[n_]:=IntegerQ[Log[2,n]];
    Select[Range[1000],#==1||pow2Q[Total[primeMS[#]]]&&And@@pow2Q/@primeMS[#]&]
Showing 1-4 of 4 results.