A325093 Heinz numbers of integer partitions into distinct powers of 2.
1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 53, 57, 106, 114, 131, 133, 159, 262, 266, 311, 318, 371, 393, 399, 622, 719, 742, 786, 798, 917, 933, 1007, 1113, 1438, 1619, 1834, 1866, 2014, 2157, 2177, 2226, 2489, 2751, 3021, 3238, 3671, 4314, 4354, 4857, 4978, 5033
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 6: {1,2} 7: {4} 14: {1,4} 19: {8} 21: {2,4} 38: {1,8} 42: {1,2,4} 53: {16} 57: {2,8} 106: {1,16} 114: {1,2,8} 131: {32} 133: {4,8} 159: {2,16} 262: {1,32} 266: {1,4,8} 311: {64}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
P:= [seq(ithprime(2^i),i=0..20)]:f:= proc(S,N) option remember; if S = [] or S[1]>N then return {1} fi; procname(S[2..-1],N) union map(t -> S[1]*t, procname(S[2..-1], floor(N/S[1])))end proc: sort(convert(f(P, P[20]),list)); # Robert Israel, Mar 28 2019
-
Mathematica
Select[Range[1000],SquareFreeQ[#]&&And@@IntegerQ/@Log[2,Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>PrimePi[p]]]&]
-
PARI
isp2(q) = (q == 1) || (q == 2) || (ispower(q,,&p) && (p==2)); isok(n) = {if (issquarefree(n), my(f=factor(n)[,1]); for (k=1, #f, if (! isp2(primepi(f[k])), return (0));); return (1);); return (0);} \\ Michel Marcus, Mar 28 2019
Comments