A325098 Number of binary carry-connected integer partitions of n.
1, 1, 2, 2, 4, 4, 7, 7, 13, 15, 23, 27, 42, 50, 72, 88, 125, 153, 211, 258, 349, 430, 569, 698, 914, 1119, 1444, 1765, 2252, 2745, 3470, 4214, 5276, 6387, 7934, 9568, 11800, 14181, 17379, 20818, 25351, 30264, 36668, 43633, 52589, 62394, 74872, 88576, 105818
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (32) (33) (322) (44) (31) (311) (51) (331) (53) (1111) (11111) (222) (511) (62) (321) (3211) (71) (3111) (31111) (332) (111111) (1111111) (2222) (3221) (3311) (5111) (32111) (311111) (11111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
h:= proc(n, s) local i, m; m:= n; for i in s do m:= Bits[Or](m, i) od; {m} end: g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union h(n, w)))(select(x-> Bits[And](n, x)>0, s)): b:= proc(n, i, s) option remember; `if`(n=0, `if`(nops(s)>1, 0, 1), `if`(i<1, 0, b(n, i-1, s)+ b(n-i, min(i, n-i), g(i, s)))) end: a:= n-> b(n$2, {}): seq(a(n), n=0..50); # Alois P. Heinz, Mar 29 2019
-
Mathematica
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[IntegerPartitions[n],Length[csm[binpos/@#]]<=1&]],{n,0,20}] (* Second program: *) h[n_, s_] := Module[{i, m = n}, Do[m = BitOr[m, i], {i, s}]; {m}]; g[n_, s_] := Function[w, If[w == {}, s ~Union~ {n}, (s ~Complement~ w) ~Union~ h[n, w]]][Select[s, BitAnd[n, #] > 0&]]; b[n_, i_, s_] := b[n, i, s] = If[n == 0, If[Length[s] > 1, 0, 1], If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[i, n - i], g[i, s]]]]; a[n_] := b[n, n, {}]; a /@ Range[0, 50] (* Jean-François Alcover, May 11 2021, after Alois P. Heinz *)
Extensions
a(21)-a(48) from Alois P. Heinz, Mar 29 2019
Comments