A080572
Number of ordered pairs (i,j), 0 <= i,j < n, for which (i & j) is nonzero, where & is the bitwise AND operator.
Original entry on oeis.org
0, 0, 1, 2, 7, 8, 15, 24, 37, 38, 49, 62, 81, 98, 121, 146, 175, 176, 195, 216, 247, 272, 307, 344, 387, 420, 463, 508, 559, 608, 663, 720, 781, 782, 817, 854, 909, 950, 1009, 1070, 1141, 1190, 1257, 1326, 1405, 1478, 1561, 1646, 1737, 1802, 1885, 1970, 2065, 2154
Offset: 0
- C. Fu, H. Fu and W. Liao, A new construction for a critical set in special Latin squares, Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Florida, 1995), Congressus Numerantium, Vol. 110 (1995), pp. 161-166.
- D. R. Stinson and G. H. J. van Rees, Some large critical sets, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Manitoba, 1981), Congressus Numerantium, Vol. 34 (1982), pp. 441-456.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- R. Bean, Three problems on partial Latin squares, Problem 418 (BCC19,2), Discrete Math., 293 (2005), 314-315.
- J. M. Dover, On two OEIS conjectures, arXiv:1606.08033 [math.CO], 2016.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 29.
-
f:=proc(n) option remember; local t;
if n <= 1 then 0
elif (n mod 2) = 0 then 3*f(n/2)+(n/2)^2
else t:=(n-1)/2; f(t)+2*f(t+1)+t^2-1; fi; end;
[seq(f(n),n=0..100)]; # N. J. A. Sloane, Jul 01 2017
-
a[0] = a[1] = 0; a[n_] := a[n] = If[EvenQ[n], 3*a[n/2] + n^2/4, 2*a[(n-1)/2 + 1] + a[(n-1)/2] + (1/4)*(n-1)^2 - 1];
Array[a, 60, 0] (* Jean-François Alcover, Dec 09 2017, from Dover's formula *)
Table[Length[Select[Tuples[Range[n-1],2],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)
A247935
Number of integer partitions of n whose distinct parts have no binary carries.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 8, 10, 11, 14, 18, 21, 26, 30, 38, 49, 47, 55, 66, 74, 84, 96, 110, 126, 134, 151, 171, 195, 209, 235, 272, 318, 307, 349, 377, 422, 448, 491, 534, 595, 617, 674, 734, 801, 841, 925, 998, 1098, 1118, 1219, 1299, 1418, 1476, 1591, 1711, 1865
Offset: 0
From _Gus Wiseman_, Mar 30 2019: (Start)
The a(1) = 1 through a(8) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (43) (44)
(111) (211) (221) (42) (52) (422)
(1111) (2111) (222) (61) (611)
(11111) (411) (421) (2222)
(2211) (2221) (4211)
(21111) (4111) (22211)
(111111) (22111) (41111)
(211111) (221111)
(1111111) (2111111)
(11111111)
(End)
-
with(Bits):
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, t) +`if`(i>n or And(t, i)>0, 0,
add(b(n-i*j, i-1, Or(t, i)), j=1..n/i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Dec 28 2014
-
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, t] + If[i > n || BitAnd[t, i] > 0, 0, Sum[b[n - i*j, i - 1, BitOr[t, i]], {j, 1, n/i}]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 80] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)
A325103
Number of increasing pairs of positive integers up to n with no binary carries.
Original entry on oeis.org
0, 0, 1, 1, 4, 5, 6, 6, 13, 16, 19, 20, 23, 24, 25, 25, 40, 47, 54, 57, 64, 67, 70, 71, 78, 81, 84, 85, 88, 89, 90, 90, 121, 136, 151, 158, 173, 180, 187, 190, 205, 212, 219, 222, 229, 232, 235, 236, 251, 258, 265, 268, 275, 278, 281, 282, 289, 292, 295, 296
Offset: 0
The a(2) = 1 through a(9) = 16 pairs:
{1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2}
{1,4} {1,4} {1,4} {1,4} {1,4} {1,4}
{2,4} {2,4} {1,6} {1,6} {1,6} {1,6}
{3,4} {2,5} {2,4} {2,4} {1,8} {1,8}
{3,4} {2,5} {2,5} {2,4} {2,4}
{3,4} {3,4} {2,5} {2,5}
{2,8} {2,8}
{3,4} {2,9}
{3,8} {3,4}
{4,8} {3,8}
{5,8} {4,8}
{6,8} {4,9}
{7,8} {5,8}
{6,8}
{6,9}
{7,8}
-
Table[Length[Select[Subsets[Range[n],{2}],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]=={}&]],{n,0,30}]
A325104
Number of increasing pairs of positive integers up to n with at least one binary carry.
Original entry on oeis.org
0, 0, 0, 2, 2, 5, 9, 15, 15, 20, 26, 35, 43, 54, 66, 80, 80, 89, 99, 114, 126, 143, 161, 182, 198, 219, 241, 266, 290, 317, 345, 375, 375, 392, 410, 437, 457, 486, 516, 551, 575, 608, 642, 681, 717, 758, 800, 845, 877, 918, 960, 1007, 1051, 1100, 1150, 1203
Offset: 0
The a(3) = 2 through a(8) = 15 pairs:
{1,3} {1,3} {1,3} {1,3} {1,3} {1,3}
{2,3} {2,3} {1,5} {1,5} {1,5} {1,5}
{2,3} {2,3} {1,7} {1,7}
{3,5} {2,6} {2,3} {2,3}
{4,5} {3,5} {2,6} {2,6}
{3,6} {2,7} {2,7}
{4,5} {3,5} {3,5}
{4,6} {3,6} {3,6}
{5,6} {3,7} {3,7}
{4,5} {4,5}
{4,6} {4,6}
{4,7} {4,7}
{5,6} {5,6}
{5,7} {5,7}
{6,7} {6,7}
-
Table[Length[Select[Subsets[Range[n],{2}],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,30}]
A325118
Heinz numbers of binary carry-connected integer partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 20, 22, 23, 25, 27, 29, 30, 31, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 53, 55, 59, 60, 61, 62, 64, 65, 67, 68, 71, 73, 75, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
22: {1,5}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
-
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Select[Range[100],Length[csm[binpos/@PrimePi/@First/@FactorInteger[#]]]<=1&]
A325109
Number of integer partitions of n whose distinct parts have no binary containments.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 8, 10, 12, 15, 18, 23, 28, 32, 41, 52, 57, 66, 76, 90, 99, 117, 131, 157, 172, 194, 216, 255, 276, 313, 358, 410, 447, 511, 546, 630, 677, 750, 818, 945, 990, 1108, 1200, 1338, 1429, 1606, 1713, 1928, 2062, 2263, 2412, 2725, 2847, 3142, 3389
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (43) (44)
(111) (211) (221) (42) (52) (53)
(1111) (2111) (222) (61) (422)
(11111) (411) (421) (611)
(2211) (2221) (2222)
(21111) (4111) (4211)
(111111) (22111) (22211)
(211111) (41111)
(1111111) (221111)
(2111111)
(11111111)
-
c:= proc() option remember; local i, x, y;
x, y:= map(n-> Bits[Split](n), [args])[];
for i to nops(x) do
if x[i]=1 and y[i]=0 then return false fi
od; true
end:
b:= proc(n, i, s) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, s)+`if`(ormap(j-> c(i, j), s), 0, add(
b(n-i*j, i-1, s union {i}), j=1..n/i))))
end:
a:= n-> b(n$2, {}):
seq(a(n), n=0..55); # Alois P. Heinz, Mar 29 2019
-
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,15}]
(* Second program: *)
c[args_List] := c[args] = Module[{i, x, y}, {x, y} = Reverse@IntegerDigits[#, 2]& /@ args; For[i = 1, i <= Length[x], i++, If[x[[i]] == 1 && y[[i]] == 0, Return[False]]]; True];
b[n_, i_, s_List] := b[n, i, s] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, s] + If[AnyTrue[s, c[{i, #}]&], 0, Sum[b[n - i*j, i-1, s ~Union~ {i}], {j, 1, n/i}]]]];
a[n_] := b[n, n, {}];
a /@ Range[0, 55] (* Jean-François Alcover, Jun 03 2021, after Alois P. Heinz *)
A325105
Number of binary carry-connected subsets of {1...n}.
Original entry on oeis.org
1, 2, 3, 7, 8, 20, 48, 112, 113, 325, 777, 1737, 3709, 7741, 15869, 32253, 32254, 96538, 225798, 485702, 1006338, 2049602, 4137346, 8315266, 16697102, 33465934, 67007886, 134100366, 268301518, 536720590, 1073575118, 2147316942, 2147316943, 6441886323
Offset: 0
The a(0) = 1 through a(4) = 8 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{3} {3}
{1,3} {4}
{2,3} {1,3}
{1,2,3} {2,3}
{1,2,3}
-
h:= proc(n, s) local i, m; m:= n;
for i in s do m:= Bits[Or](m, i) od; {m}
end:
g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union
h(n, w)))(select(x-> Bits[And](n, x)>0, s)):
b:= proc(n, s) option remember; `if`(n=0,
`if`(nops(s)>1, 0, 1), b(n-1, s)+b(n-1, g(n, s)))
end:
a:= n-> b(n, {}):
seq(a(n), n=0..35); # Alois P. Heinz, Mar 31 2019
-
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Range[n]],Length[csm[binpos/@#]]<=1&]],{n,0,10}]
A325097
Heinz numbers of integer partitions whose distinct parts have no binary carries.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47, 48, 49, 52, 53, 54, 56, 57, 58, 59, 61, 63, 64, 67, 69, 71, 72, 73, 74, 76, 79, 81, 83, 84, 86, 89, 95, 96, 97, 98, 99, 101
Offset: 1
Most small numbers are in the sequence, however the sequence of non-terms together with their prime indices begins:
10: {1,3}
15: {2,3}
20: {1,1,3}
22: {1,5}
30: {1,2,3}
34: {1,7}
39: {2,6}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
46: {1,9}
50: {1,3,3}
51: {2,7}
55: {3,5}
60: {1,1,2,3}
62: {1,11}
65: {3,6}
66: {1,2,5}
68: {1,1,7}
70: {1,3,4}
-
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],stableQ[PrimePi/@First/@FactorInteger[#],Intersection[binpos[#1],binpos[#2]]!={}&]&]
A325119
Heinz numbers of binary carry-connected strict integer partitions.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 11, 13, 15, 17, 19, 22, 23, 29, 30, 31, 34, 37, 39, 41, 43, 46, 47, 51, 53, 55, 59, 61, 62, 65, 67, 71, 73, 77, 79, 82, 83, 85, 87, 89, 91, 93, 94, 97, 101, 102, 103, 107, 109, 110, 113, 115, 118, 119, 127, 129, 130, 131, 134, 137, 139, 141
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
22: {1,5}
23: {9}
29: {10}
30: {1,2,3}
31: {11}
34: {1,7}
37: {12}
39: {2,6}
41: {13}
43: {14}
-
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Select[Range[100],SquareFreeQ[#]&&Length[csm[binpos/@PrimePi/@First/@FactorInteger[#]]]<=1&]
A325102
Number of ordered pairs of positive integers up to n with no binary carries.
Original entry on oeis.org
0, 0, 2, 2, 8, 10, 12, 12, 26, 32, 38, 40, 46, 48, 50, 50, 80, 94, 108, 114, 128, 134, 140, 142, 156, 162, 168, 170, 176, 178, 180, 180, 242, 272, 302, 316, 346, 360, 374, 380, 410, 424, 438, 444, 458, 464, 470, 472, 502, 516, 530, 536, 550, 556, 562, 564, 578
Offset: 0
The a(2) = 2 through a(6) = 12 pairs:
(1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(2,1) (2,1) (1,4) (1,4) (1,4) (1,4)
(2,1) (2,1) (1,6) (1,6)
(2,4) (2,4) (2,1) (2,1)
(3,4) (2,5) (2,4) (2,4)
(4,1) (3,4) (2,5) (2,5)
(4,2) (4,1) (3,4) (3,4)
(4,3) (4,2) (4,1) (4,1)
(4,3) (4,2) (4,2)
(5,2) (4,3) (4,3)
(5,2) (5,2)
(6,1) (6,1)
-
Table[Length[Select[Tuples[Range[n],2],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]=={}&]],{n,0,30}]
Showing 1-10 of 14 results.
Comments