cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A325118 Heinz numbers of binary carry-connected integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 20, 22, 23, 25, 27, 29, 30, 31, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 53, 55, 59, 60, 61, 62, 64, 65, 67, 68, 71, 73, 75, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. An integer partition is binary carry-connected if the graph whose vertices are the parts and whose edges are binary carries is connected.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose prime indices are binary carry-connected. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[100],Length[csm[binpos/@PrimePi/@First/@FactorInteger[#]]]<=1&]

A325095 Number of subsets of {1...n} with no binary carries.

Original entry on oeis.org

1, 2, 4, 5, 10, 12, 14, 15, 30, 35, 40, 42, 47, 49, 51, 52, 104, 119, 134, 139, 154, 159, 164, 166, 181, 186, 191, 193, 198, 200, 202, 203, 406, 458, 510, 525, 577, 592, 607, 612, 664, 679, 694, 699, 714, 719, 724, 726, 778, 793, 808, 813, 828, 833, 838, 840
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the binary representations of {2,5,8} are:
2 = 10,
5 = 101,
8 = 1000,
and since there are no columns with more than one 1, {2,5,8} is counted under a(8).

Examples

			The a(1) = 1 through a(7) = 15 subsets:
  {}   {}     {}     {}       {}       {}       {}
  {1}  {1}    {1}    {1}      {1}      {1}      {1}
       {2}    {2}    {2}      {2}      {2}      {2}
       {1,2}  {3}    {3}      {3}      {3}      {3}
              {1,2}  {4}      {4}      {4}      {4}
                     {1,2}    {5}      {5}      {5}
                     {1,4}    {1,2}    {6}      {6}
                     {2,4}    {1,4}    {1,2}    {7}
                     {3,4}    {2,4}    {1,4}    {1,2}
                     {1,2,4}  {2,5}    {1,6}    {1,4}
                              {3,4}    {2,4}    {1,6}
                              {1,2,4}  {2,5}    {2,4}
                                       {3,4}    {2,5}
                                       {1,2,4}  {3,4}
                                                {1,2,4}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, b(n-1, t)+
         `if`(Bits[And](n, t)=0, b(n-1, Bits[Or](n, t)), 0))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..63);  # Alois P. Heinz, Mar 28 2019
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Range[n]],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,10}]

Formula

a(2^n - 1) = A000110(n + 1).

Extensions

a(16)-a(55) from Alois P. Heinz, Mar 28 2019

A325107 Number of subsets of {1...n} with no binary containments.

Original entry on oeis.org

1, 2, 4, 5, 10, 13, 18, 19, 38, 52, 77, 83, 133, 147, 166, 167, 334, 482, 764, 848, 1465, 1680, 1987, 2007, 3699, 4413, 5488, 5572, 7264, 7412, 7579, 7580, 15160, 22573, 37251, 42824, 77387, 92863, 116453, 118461, 227502, 286775, 382573, 392246, 555661, 574113
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second.

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}   {}     {}     {}       {}       {}
      {1}  {1}    {1}    {1}      {1}      {1}
           {2}    {2}    {2}      {2}      {2}
           {1,2}  {3}    {3}      {3}      {3}
                  {1,2}  {4}      {4}      {4}
                         {1,2}    {5}      {5}
                         {1,4}    {1,2}    {6}
                         {2,4}    {1,4}    {1,2}
                         {3,4}    {2,4}    {1,4}
                         {1,2,4}  {2,5}    {1,6}
                                  {3,4}    {2,4}
                                  {3,5}    {2,5}
                                  {1,2,4}  {3,4}
                                           {3,5}
                                           {3,6}
                                           {5,6}
                                           {1,2,4}
                                           {3,5,6}
		

Crossrefs

Programs

  • Maple
    c:= proc() option remember; local i, x, y;
          x, y:= map(n-> Bits[Split](n), [args])[];
          for i to nops(x) do
            if x[i]=1 and y[i]=0 then return false fi
          od; true
        end:
    b:= proc(n, s) option remember; `if`(n=0, 1, b(n-1, s)+
         `if`(ormap(i-> c(n, i), s), 0, b(n-1, s union {n})))
        end:
    a:= n-> b(n, {}):
    seq(a(n), n=0..34);  # Alois P. Heinz, Mar 28 2019
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Range[n]],stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,13}]

Formula

a(2^n - 1) = A014466(n).

Extensions

a(16)-a(45) from Alois P. Heinz, Mar 28 2019

A325119 Heinz numbers of binary carry-connected strict integer partitions.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 15, 17, 19, 22, 23, 29, 30, 31, 34, 37, 39, 41, 43, 46, 47, 51, 53, 55, 59, 61, 62, 65, 67, 71, 73, 77, 79, 82, 83, 85, 87, 89, 91, 93, 94, 97, 101, 102, 103, 107, 109, 110, 113, 115, 118, 119, 127, 129, 130, 131, 134, 137, 139, 141
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. An integer partition is binary carry-connected if the graph whose vertices are the parts and whose edges are binary carries is connected.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices are binary carry-connected. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  19: {8}
  22: {1,5}
  23: {9}
  29: {10}
  30: {1,2,3}
  31: {11}
  34: {1,7}
  37: {12}
  39: {2,6}
  41: {13}
  43: {14}
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[100],SquareFreeQ[#]&&Length[csm[binpos/@PrimePi/@First/@FactorInteger[#]]]<=1&]

A325123 Number of divisible pairs of positive integers up to n with no binary carries.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 9, 9, 12, 12, 13, 13, 17, 17, 19, 19, 22, 22, 23, 23, 28, 28, 29, 29, 31, 31, 32, 32, 37, 37, 39, 39, 44, 44, 45, 45, 50, 50, 52, 52, 54, 54, 55, 55, 62, 62, 64, 64, 66, 66, 68, 68, 72, 72, 73, 73, 76, 76, 77, 77, 83, 83, 85, 85
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap.
a(2k+1) = a(2k), since an odd number and any divisor will overlap in the last digit. Additionally, a(2k+2) > a(2k+1) because the pair {1,2k+2} is always valid. Therefore, every term appears exactly twice. - Charlie Neder, Apr 02 2019

Examples

			The a(2) = 1 through a(11) = 9 pairs:
  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}   {1,2}
                {1,4}  {1,4}  {1,4}  {1,4}  {1,4}  {1,4}  {1,4}   {1,4}
                {2,4}  {2,4}  {1,6}  {1,6}  {1,6}  {1,6}  {1,6}   {1,6}
                              {2,4}  {2,4}  {1,8}  {1,8}  {1,8}   {1,8}
                                            {2,4}  {2,4}  {2,4}   {2,4}
                                            {2,8}  {2,8}  {2,8}   {2,8}
                                            {4,8}  {4,8}  {4,8}   {4,8}
                                                          {1,10}  {1,10}
                                                          {5,10}  {5,10}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Tuples[Range[n],2],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]=={}&]],{n,0,20}]

A371445 Numbers whose distinct prime indices are binary carry-connected and have no binary containments.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1

Views

Author

Gus Wiseman, Mar 30 2024

Keywords

Comments

Also Heinz numbers of binary carry-connected integer partitions whose distinct parts have no binary containments, counted by A371446.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A binary carry of two positive integers is an overlap of binary indices. A multiset is said to be binary carry-connected iff the graph whose vertices are the elements and whose edges are binary carries is connected.
A binary containment is a containment of binary indices. For example, the numbers {3,5} have binary indices {{1,2},{1,3}}, so there is a binary carry but not a binary containment.

Examples

			The terms together with their prime indices begin:
     2: {1}            37: {12}              97: {25}
     3: {2}            41: {13}             101: {26}
     4: {1,1}          43: {14}             103: {27}
     5: {3}            47: {15}             107: {28}
     7: {4}            49: {4,4}            109: {29}
     8: {1,1,1}        53: {16}             113: {30}
     9: {2,2}          55: {3,5}            115: {3,9}
    11: {5}            59: {17}             121: {5,5}
    13: {6}            61: {18}             125: {3,3,3}
    16: {1,1,1,1}      64: {1,1,1,1,1,1}    127: {31}
    17: {7}            65: {3,6}            128: {1,1,1,1,1,1,1}
    19: {8}            67: {19}             131: {32}
    23: {9}            71: {20}             137: {33}
    25: {3,3}          73: {21}             139: {34}
    27: {2,2,2}        79: {22}             143: {5,6}
    29: {10}           81: {2,2,2,2}        145: {3,10}
    31: {11}           83: {23}             149: {35}
    32: {1,1,1,1,1}    89: {24}             151: {36}
		

Crossrefs

Contains all powers of primes A000961 except 1.
Case of A325118 (counted by A325098) without binary containments.
For binary indices of binary indices we have A326750 = A326704 /\ A326749.
For prime indices of prime indices we have A329559 = A305078 /\ A316476.
An opposite version is A371294 = A087086 /\ A371291.
Partitions of this type are counted by A371446.
Carry-connected case of A371455 (counted by A325109).
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Select[Range[100],stableQ[bpe/@prix[#],SubsetQ] && Length[csm[bpe/@prix[#]]]==1&]

Formula

Intersection of A371455 and A325118.

A325124 Number of divisible pairs of positive integers up to n with at least one binary carry.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 10, 12, 13, 16, 18, 20, 23, 25, 28, 32, 33, 35, 39, 41, 44, 48, 51, 53, 56, 59, 62, 66, 70, 72, 79, 81, 82, 86, 88, 92, 96, 98, 101, 105, 108, 110, 116, 118, 122, 128, 131, 133, 136, 139, 143, 147, 151, 153, 159, 163, 167, 171, 174, 176, 185
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap.

Examples

			The a(1) = 1 through a(8) = 13 pairs:
  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)
         (2,2)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)
                (2,2)  (2,2)  (1,5)  (1,5)  (1,5)  (1,5)
                (3,3)  (3,3)  (2,2)  (2,2)  (1,7)  (1,7)
                       (4,4)  (3,3)  (2,6)  (2,2)  (2,2)
                              (4,4)  (3,3)  (2,6)  (2,6)
                              (5,5)  (3,6)  (3,3)  (3,3)
                                     (4,4)  (3,6)  (3,6)
                                     (5,5)  (4,4)  (4,4)
                                     (6,6)  (5,5)  (5,5)
                                            (6,6)  (6,6)
                                            (7,7)  (7,7)
                                                   (8,8)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Tuples[Range[n],2],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}]

Formula

a(n) = A307230(n) + n.

A371446 Number of carry-connected integer partitions whose distinct parts have no binary containments.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 4, 8, 4, 7, 7, 12, 10, 14, 12, 15, 19, 19, 21, 32, 27, 33, 40, 46, 47, 61, 52, 75, 89, 95, 104, 129, 129, 149, 176, 188, 208, 249, 257, 296, 341, 373, 394, 476, 496, 552
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

These partitions are ranked by A371445.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A binary carry of two positive integers is an overlap of binary indices. An integer partition is binary carry-connected iff the graph with one vertex for each part and edges corresponding to binary carries is connected.
A binary containment is a containment of binary indices. For example, the numbers {3,5} have binary indices {{1,2},{1,3}}, so there is a binary carry but not a binary containment.

Examples

			The a(12) = 8 through a(14) = 7 partitions:
  (12)             (13)                         (14)
  (6,6)            (10,3)                       (7,7)
  (9,3)            (5,5,3)                      (9,5)
  (4,4,4)          (1,1,1,1,1,1,1,1,1,1,1,1,1)  (6,5,3)
  (6,3,3)                                       (5,3,3,3)
  (3,3,3,3)                                     (2,2,2,2,2,2,2)
  (2,2,2,2,2,2)                                 (1,1,1,1,1,1,1,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

The first condition (carry-connected) is A325098.
The second condition (stable) is A325109.
Ranks for binary indices of binary indices are A326750 = A326704 /\ A326749.
Ranks for prime indices of prime indices are A329559 = A305078 /\ A316476.
Ranks for prime indices of binary indices are A371294 = A087086 /\ A371291.
Ranks for binary indices of prime indices are A371445 = A325118 /\ A371455.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n], stableQ[bix/@Union[#],SubsetQ]&&Length[csm[bix/@#]]<=1&]],{n,0,30}]

A306297 Number T(n,k) of subsets of [n] with k binary carry-connected components; triangle T(n,k), n >= 0, 0 <= k <= A029837(n+1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 1, 1, 7, 7, 1, 1, 19, 11, 1, 1, 47, 15, 1, 1, 111, 15, 1, 1, 112, 126, 16, 1, 1, 324, 166, 20, 1, 1, 776, 222, 24, 1, 1, 1736, 286, 24, 1, 1, 3708, 358, 28, 1, 1, 7740, 422, 28, 1, 1, 15868, 486, 28, 1, 1, 32252, 486, 28, 1, 1, 32253, 32738, 514, 29, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2019

Keywords

Comments

Two integers are binary carry-connected if their bitwise AND is not zero.
T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k > A029837(n+1).

Examples

			T(4,0) = 1: {}.
T(4,1) = 7: 1, 2, 3, 13, 23, 123, 4.
T(4,2) = 7: 1|2, 1|4, 2|4, 3|4, 13|4, 23|4, 123|4.
T(4,3) = 1: 1|2|4.
(The connected components are shown as blocks of a set partition.)
Triangle T(n,k) begins:
  1;
  1,    1;
  1,    2,   1;
  1,    6,   1;
  1,    7,   7,  1;
  1,   19,  11,  1;
  1,   47,  15,  1;
  1,  111,  15,  1;
  1,  112, 126, 16, 1;
  1,  324, 166, 20, 1;
  1,  776, 222, 24, 1;
  1, 1736, 286, 24, 1;
  1, 3708, 358, 28, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, -1 + A325105.
Row sums give A000079.
Number of terms in row n gives A070941.

Programs

  • Maple
    h:= proc(n, s) local i, m; m:= n;
          for i in s do m:= Bits[Or](m, i) od; {m}
        end:
    g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union
                  h(n, w)))(select(x-> Bits[And](n, x)>0, s)):
    b:= proc(n, s) option remember; `if`(n=0, x^nops(s),
          b(n-1, s)+b(n-1, g(n, s)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, {})):
    seq(T(n), n=0..23);
  • Mathematica
    h[n_, s_List] := Module[{i, m = n}, For[i = 1, i <= Length[s], i++, m = BitOr[m, s[[i]]]]; m];
    g[n_, s_List] := Function[w, If[w == {}, s ~Union~ {n}, s ~Complement~ w  ~Union~ {h[n, w]}]][Select[s, BitAnd[n, #] > 0&]];
    b[n_, s_List] := b[n, s] = If[n == 0, x^Length[s], b[n - 1, s] + b[n - 1, g[n, s]]];
    T[n_] := CoefficientList[b[n, {}], x];
    T /@ Range[0, 23] // Flatten (* Jean-François Alcover, Apr 18 2021, after Alois P. Heinz *)

Formula

T(n,0) + T(n,1) = A325105(n).
T(n,A029837(n+1)) = 1.

A306299 Number of binary carry-connected subsets of [n] containing n (for n > 0).

Original entry on oeis.org

1, 1, 1, 4, 1, 12, 28, 64, 1, 212, 452, 960, 1972, 4032, 8128, 16384, 1, 64284, 129260, 259904, 520636, 1043264, 2087744, 4177920, 8381836, 16768832, 33541952, 67092480, 134201152, 268419072, 536854528, 1073741824, 1, 4294569380, 8589336404, 17179068096
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2019

Keywords

Comments

Two integers are binary carry-connected if their bitwise AND is not zero.
For n = 0 the carry-connected subset is the empty set.

Crossrefs

Partial differences of A325105.
Cf. A131577.

Programs

  • Maple
    h:= proc(n, s) local i, m; m:= n;
          for i in s do m:= Bits[Or](m, i) od; {m}
        end:
    g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union
                  h(n, w)))(select(x-> Bits[And](n, x)>0, s)):
    b:= proc(n, s) option remember; `if`(n=0,
          `if`(nops(s)>1, 0, 1), b(n-1, s)+b(n-1, g(n, s)))
        end:
    a:= n-> `if`(n=0, 1, b(n-1, {n})):
    seq(a(n), n=0..42);
  • Mathematica
    h[n_, s_] := Module[{i, m = n}, Do[m = BitOr[m, i], {i, s}]; {m}];
    g[n_, s_] := Function[w, If[w == {}, s ~Union~ {n}, s ~Complement~ w ~Union~ h[n, w]]][Select[s, BitAnd[n, #] > 0&]];
    b[n_, s_] := b[n, s] = If[n == 0, If[Length[s] > 1, 0, 1], b[n - 1, s] + b[n - 1, g[n, s]]];
    a[n_] := If[n == 0, 1, b[n - 1, {n}]];
    a /@ Range[0, 42] (* Jean-François Alcover, May 10 2020, after Maple *)

Formula

a(n) = A325105(n) - A325105(n-1) for n > 0, a(0) = 1.
a(n) = 1 <=> n in { A131577 }.
a(n) mod 4 = 0 <=> not (n in { A131577 }).
Showing 1-10 of 11 results. Next