cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A050315 Main diagonal of A050314.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 5, 1, 2, 2, 5, 2, 5, 5, 15, 1, 2, 2, 5, 2, 5, 5, 15, 2, 5, 5, 15, 5, 15, 15, 52, 1, 2, 2, 5, 2, 5, 5, 15, 2, 5, 5, 15, 5, 15, 15, 52, 2, 5, 5, 15, 5, 15, 15, 52, 5, 15, 15, 52, 15, 52, 52, 203, 1, 2, 2, 5, 2, 5, 5, 15, 2, 5, 5, 15, 5, 15, 15, 52, 2, 5, 5, 15, 5, 15
Offset: 0

Views

Author

Christian G. Bower, Sep 15 1999

Keywords

Comments

Also, a(n) is the number of odd multinomial coefficients n!/(k_1!...k_m!) with 1 <= k_1 <= ... <= k_m and k_1 + ... + k_m = n. - Pontus von Brömssen, Mar 23 2018
From Gus Wiseman, Mar 30 2019: (Start)
Also the number of strict integer partitions of n with no binary carries. The Heinz numbers of these partitions are given by A325100. A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the a(1) = 1 through a(15) = 15 strict integer partitions with no binary carries are:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (D) (E) (F)
(21) (41) (42) (43) (81) (82) (83) (84) (85) (86) (87)
(52) (92) (94) (A4) (96)
(61) (A1) (C1) (C2) (A5)
(421) (821) (841) (842) (B4)
(C3)
(D2)
(E1)
(843)
(852)
(861)
(942)
(A41)
(C21)
(8421)
(End)

Crossrefs

Programs

  • Maple
    a:= n-> combinat[bell](add(i,i=convert(n, base, 2))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 08 2019
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)
    a[n_] := BellB[DigitCount[n, 2, 1]];
    a /@ Range[0, 100] (* Jean-François Alcover, May 21 2021 *)

Formula

Bell number of number of 1's in binary: a(n) = A000110(A000120(n)).

A267610 Total number of OFF (white) cells after n iterations of the "Rule 182" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

0, 0, 2, 2, 4, 6, 12, 12, 14, 16, 22, 24, 30, 36, 50, 50, 52, 54, 60, 62, 68, 74, 88, 90, 96, 102, 116, 122, 136, 150, 180, 180, 182, 184, 190, 192, 198, 204, 218, 220, 226, 232, 246, 252, 266, 280, 310, 312, 318, 324, 338, 344, 358, 372, 402, 408, 422, 436
Offset: 0

Views

Author

Robert Price, Jan 18 2016

Keywords

Comments

From Gus Wiseman, Mar 30 2019: (Start)
It appears that a(n) is also the number of increasing binary-containment pairs of distinct positive integers up to n + 1. A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. For example, the a(2) = 2 through a(8) = 14 pairs are:
{1,3} {1,3} {1,3} {1,3} {1,3} {1,3} {1,3}
{2,3} {2,3} {1,5} {1,5} {1,5} {1,5} {1,5}
{2,3} {2,3} {1,7} {1,7} {1,7}
{4,5} {2,6} {2,3} {2,3} {1,9}
{4,5} {2,6} {2,6} {2,3}
{4,6} {2,7} {2,7} {2,6}
{3,7} {3,7} {2,7}
{4,5} {4,5} {3,7}
{4,6} {4,6} {4,5}
{4,7} {4,7} {4,6}
{5,7} {5,7} {4,7}
{6,7} {6,7} {5,7}
{6,7}
{8,9}
(End)

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=182; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc,k]],{k,1,rows}] (* Number of White cells through stage n *)

Formula

Conjecture: a(n) = A267700(n) - n. - Gus Wiseman, Mar 30 2019
G.f.: (1/x)*(A(x)/x - (x+1)/(1-x)^2) where A(x) is the g.f. for A006046 (conjectured). - John Tyler Rascoe, Jul 08 2024

A267700 "Tree" sequence in a 90-degree sector of the cellular automaton of A160720.

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 12, 19, 20, 23, 26, 33, 36, 43, 50, 65, 66, 69, 72, 79, 82, 89, 96, 111, 114, 121, 128, 143, 150, 165, 180, 211, 212, 215, 218, 225, 228, 235, 242, 257, 260, 267, 274, 289, 296, 311, 326, 357, 360, 367, 374, 389, 396, 411, 426, 457, 464, 479, 494, 525, 540, 571, 602, 665, 666, 669, 672, 679, 682, 689
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2016

Keywords

Comments

Conjecture: this is also the "tree" sequence in a 120-degree sector of the cellular automaton of A266532.
It appears that this is also the partial sums of A038573.
a(n) is also the total number of ON cells after n-th stage in the tree that arises from one of the four spokes in a 90-degree sector of the cellular automaton A160720 on the square grid.
Note that the structure of A160720 is also the "outward" version of the Ulam-Warburton cellular automaton of A147562.
It appears that A038573 gives the number of cells turned ON at n-th stage.
Conjecture: a(n) is also the total number of Y-toothpicks after n-th stage in the tree that arises from one of the three spokes in a 120-degree sector of the cellular automaton of A266532 on the triangular grid.
Note that the structure of A266532 is also the "outward" version of the Y-toothpick cellular automaton of A160120.
It appears that A038573 also gives the number of Y-toothpicks added at n-th stage.
Comment from N. J. A. Sloane, Jan 23 2016: All the above conjectures are true!
From Gus Wiseman, Mar 31 2019: (Start)
a(n) is also the number of nondecreasing binary-containment pairs of positive integers up to n. A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. For example, the a(1) = 1 through a(6) = 12 pairs are:
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
(2,2) (1,3) (1,3) (1,3) (1,3)
(2,2) (2,2) (1,5) (1,5)
(2,3) (2,3) (2,2) (2,2)
(3,3) (3,3) (2,3) (2,3)
(4,4) (3,3) (2,6)
(4,4) (3,3)
(4,5) (4,4)
(5,5) (4,5)
(4,6)
(5,5)
(6,6)
(End)

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[2^DigitCount[n,2,1]-1,{n,0,30}]] (* based on conjecture confirmed by Sloane, Gus Wiseman, Mar 31 2019 *)

Formula

a(n) = (A160720(n+1) - 1)/4.
Conjecture 1: a(n) = (A266532(n+1) - 1)/3.
Conjecture 2: a(n) = A160720(n+1) - A266532(n+1).
All of the above conjectures are true. - N. J. A. Sloane, Jan 23 2016
(Conjecture) a(n) = A267610(n) + n. - Gus Wiseman, Mar 31 2019

A080572 Number of ordered pairs (i,j), 0 <= i,j < n, for which (i & j) is nonzero, where & is the bitwise AND operator.

Original entry on oeis.org

0, 0, 1, 2, 7, 8, 15, 24, 37, 38, 49, 62, 81, 98, 121, 146, 175, 176, 195, 216, 247, 272, 307, 344, 387, 420, 463, 508, 559, 608, 663, 720, 781, 782, 817, 854, 909, 950, 1009, 1070, 1141, 1190, 1257, 1326, 1405, 1478, 1561, 1646, 1737, 1802, 1885, 1970, 2065, 2154
Offset: 0

Views

Author

Richard Bean, Feb 22 2003

Keywords

Comments

Conjectured to be less than or equal to lcs(n) (see sequence A063437). The value of a(2^n) is that given in Stinson and van Rees and the value of a(2^n-1) is that given in Fu, Fu and Liao. This function gives an easy way to generate these two constructions.
From Gus Wiseman, Mar 30 2019: (Start)
Also the number of ordered pairs of positive integers up to n with at least one binary carry. A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the a(2) = 1 through a(6) = 15 ordered pairs are:
(1,1) (1,1) (1,1) (1,1) (1,1)
(2,2) (1,3) (1,3) (1,3)
(2,2) (2,2) (1,5)
(2,3) (2,3) (2,2)
(3,1) (3,1) (2,3)
(3,2) (3,2) (3,1)
(3,3) (3,3) (3,2)
(4,4) (3,3)
(3,5)
(4,4)
(4,5)
(5,1)
(5,3)
(5,4)
(5,5)
(End)
a(n) is also the number of even elements in the n X n symmetric Pascal matrix. - Stefano Spezia, Nov 14 2022

References

  • C. Fu, H. Fu and W. Liao, A new construction for a critical set in special Latin squares, Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Florida, 1995), Congressus Numerantium, Vol. 110 (1995), pp. 161-166.
  • D. R. Stinson and G. H. J. van Rees, Some large critical sets, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Manitoba, 1981), Congressus Numerantium, Vol. 34 (1982), pp. 441-456.

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; local t;
    if n <= 1 then 0
    elif (n mod 2) =  0 then 3*f(n/2)+(n/2)^2
    else t:=(n-1)/2; f(t)+2*f(t+1)+t^2-1; fi; end;
    [seq(f(n),n=0..100)]; # N. J. A. Sloane, Jul 01 2017
  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n] = If[EvenQ[n], 3*a[n/2] + n^2/4, 2*a[(n-1)/2 + 1] + a[(n-1)/2] + (1/4)*(n-1)^2 - 1];
    Array[a, 60, 0] (* Jean-François Alcover, Dec 09 2017, from Dover's formula *)
    Table[Length[Select[Tuples[Range[n-1],2],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)

Formula

a(2^n) = 4^n-3^n = A005061(n); a(2^n+1) = 4^n-3^n+1 = A155609(n); a(2^n-1) = 4^n-3^n-2^(n+1)+3.
a(0)=a(1)=0, a(2n) = 3a(n)+n^2, a(2n+1) = a(n)+2a(n+1)+n^2-1. This was proved by Jeremy Dover. - Ralf Stephan, Dec 08 2004
a(n) = (A325104(n) - n)/2. - Gus Wiseman, Mar 30 2019

A247935 Number of integer partitions of n whose distinct parts have no binary carries.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 10, 11, 14, 18, 21, 26, 30, 38, 49, 47, 55, 66, 74, 84, 96, 110, 126, 134, 151, 171, 195, 209, 235, 272, 318, 307, 349, 377, 422, 448, 491, 534, 595, 617, 674, 734, 801, 841, 925, 998, 1098, 1118, 1219, 1299, 1418, 1476, 1591, 1711, 1865
Offset: 0

Views

Author

David S. Newman, Sep 26 2014

Keywords

Comments

From Gus Wiseman, Mar 31 2019: (Start)
A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the reversed binary expansions of 2, 5, and 8 are
{0,1}
{1,0,1}
{0,0,0,1}
and since there are no columns with more than one 1, the partition (8,5,2) is counted under a(15). The Heinz numbers of these partitions are given by A325097.
(End)

Examples

			From _Gus Wiseman_, Mar 30 2019: (Start)
The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (33)      (43)       (44)
             (111)  (211)   (221)    (42)      (52)       (422)
                    (1111)  (2111)   (222)     (61)       (611)
                            (11111)  (411)     (421)      (2222)
                                     (2211)    (2221)     (4211)
                                     (21111)   (4111)     (22211)
                                     (111111)  (22111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Programs

  • Maple
    with(Bits):
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, t) +`if`(i>n or And(t, i)>0, 0,
          add(b(n-i*j, i-1, Or(t, i)), j=1..n/i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 28 2014
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, t] + If[i > n || BitAnd[t, i] > 0, 0, Sum[b[n - i*j, i - 1, BitOr[t, i]], {j, 1, n/i}]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 80] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Oct 15 2014
Name edited by Gus Wiseman, Mar 31 2019

A325096 Number of maximal subsets of {1...n} with no binary carries.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 10, 12, 13, 14, 15, 15, 20, 25, 27, 32, 34, 36, 37, 42, 44, 46, 47, 49, 50, 51, 52, 52, 67, 82, 87, 102, 107, 112, 114, 129, 134, 139, 141, 146, 148, 150, 151, 166, 171, 176, 178, 183, 185, 187, 188, 193, 195, 197, 198, 200, 201
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion.

Examples

			The a(1) = 1 through a(9) = 7 maximal subsets:
  {1}  {12}  {3}   {34}   {25}   {16}   {7}    {78}    {69}
             {12}  {124}  {34}   {25}   {16}   {168}   {78}
                          {124}  {34}   {25}   {258}   {168}
                                 {124}  {34}   {348}   {249}
                                        {124}  {1248}  {258}
                                                       {348}
                                                       {1248}
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[n]],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]]],{n,0,10}]

Formula

a(2^n - 1) = A000110(n).

Extensions

a(15)-a(61) from Alois P. Heinz, Mar 28 2019

A325104 Number of increasing pairs of positive integers up to n with at least one binary carry.

Original entry on oeis.org

0, 0, 0, 2, 2, 5, 9, 15, 15, 20, 26, 35, 43, 54, 66, 80, 80, 89, 99, 114, 126, 143, 161, 182, 198, 219, 241, 266, 290, 317, 345, 375, 375, 392, 410, 437, 457, 486, 516, 551, 575, 608, 642, 681, 717, 758, 800, 845, 877, 918, 960, 1007, 1051, 1100, 1150, 1203
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion.
The version for ordered pairs is A080572.

Examples

			The a(3) = 2 through a(8) = 15 pairs:
  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}
  {2,3}  {2,3}  {1,5}  {1,5}  {1,5}  {1,5}
                {2,3}  {2,3}  {1,7}  {1,7}
                {3,5}  {2,6}  {2,3}  {2,3}
                {4,5}  {3,5}  {2,6}  {2,6}
                       {3,6}  {2,7}  {2,7}
                       {4,5}  {3,5}  {3,5}
                       {4,6}  {3,6}  {3,6}
                       {5,6}  {3,7}  {3,7}
                              {4,5}  {4,5}
                              {4,6}  {4,6}
                              {4,7}  {4,7}
                              {5,6}  {5,6}
                              {5,7}  {5,7}
                              {6,7}  {6,7}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{2}],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,30}]

Formula

a(n) = 2 * A080572(n - 2) + n.

A325095 Number of subsets of {1...n} with no binary carries.

Original entry on oeis.org

1, 2, 4, 5, 10, 12, 14, 15, 30, 35, 40, 42, 47, 49, 51, 52, 104, 119, 134, 139, 154, 159, 164, 166, 181, 186, 191, 193, 198, 200, 202, 203, 406, 458, 510, 525, 577, 592, 607, 612, 664, 679, 694, 699, 714, 719, 724, 726, 778, 793, 808, 813, 828, 833, 838, 840
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the binary representations of {2,5,8} are:
2 = 10,
5 = 101,
8 = 1000,
and since there are no columns with more than one 1, {2,5,8} is counted under a(8).

Examples

			The a(1) = 1 through a(7) = 15 subsets:
  {}   {}     {}     {}       {}       {}       {}
  {1}  {1}    {1}    {1}      {1}      {1}      {1}
       {2}    {2}    {2}      {2}      {2}      {2}
       {1,2}  {3}    {3}      {3}      {3}      {3}
              {1,2}  {4}      {4}      {4}      {4}
                     {1,2}    {5}      {5}      {5}
                     {1,4}    {1,2}    {6}      {6}
                     {2,4}    {1,4}    {1,2}    {7}
                     {3,4}    {2,4}    {1,4}    {1,2}
                     {1,2,4}  {2,5}    {1,6}    {1,4}
                              {3,4}    {2,4}    {1,6}
                              {1,2,4}  {2,5}    {2,4}
                                       {3,4}    {2,5}
                                       {1,2,4}  {3,4}
                                                {1,2,4}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, b(n-1, t)+
         `if`(Bits[And](n, t)=0, b(n-1, Bits[Or](n, t)), 0))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..63);  # Alois P. Heinz, Mar 28 2019
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Range[n]],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,10}]

Formula

a(2^n - 1) = A000110(n + 1).

Extensions

a(16)-a(55) from Alois P. Heinz, Mar 28 2019

A325097 Heinz numbers of integer partitions whose distinct parts have no binary carries.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47, 48, 49, 52, 53, 54, 56, 57, 58, 59, 61, 63, 64, 67, 69, 71, 72, 73, 74, 76, 79, 81, 83, 84, 86, 89, 95, 96, 97, 98, 99, 101
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose distinct prime indices have no binary carries.

Examples

			Most small numbers are in the sequence, however the sequence of non-terms together with their prime indices begins:
  10: {1,3}
  15: {2,3}
  20: {1,1,3}
  22: {1,5}
  30: {1,2,3}
  34: {1,7}
  39: {2,6}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  46: {1,9}
  50: {1,3,3}
  51: {2,7}
  55: {3,5}
  60: {1,1,2,3}
  62: {1,11}
  65: {3,6}
  66: {1,2,5}
  68: {1,1,7}
  70: {1,3,4}
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],stableQ[PrimePi/@First/@FactorInteger[#],Intersection[binpos[#1],binpos[#2]]!={}&]&]

A325102 Number of ordered pairs of positive integers up to n with no binary carries.

Original entry on oeis.org

0, 0, 2, 2, 8, 10, 12, 12, 26, 32, 38, 40, 46, 48, 50, 50, 80, 94, 108, 114, 128, 134, 140, 142, 156, 162, 168, 170, 176, 178, 180, 180, 242, 272, 302, 316, 346, 360, 374, 380, 410, 424, 438, 444, 458, 464, 470, 472, 502, 516, 530, 536, 550, 556, 562, 564, 578
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion.

Examples

			The a(2) = 2 through a(6) = 12 pairs:
  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)
  (2,1)  (2,1)  (1,4)  (1,4)  (1,4)  (1,4)
                (2,1)  (2,1)  (1,6)  (1,6)
                (2,4)  (2,4)  (2,1)  (2,1)
                (3,4)  (2,5)  (2,4)  (2,4)
                (4,1)  (3,4)  (2,5)  (2,5)
                (4,2)  (4,1)  (3,4)  (3,4)
                (4,3)  (4,2)  (4,1)  (4,1)
                       (4,3)  (4,2)  (4,2)
                       (5,2)  (4,3)  (4,3)
                              (5,2)  (5,2)
                              (6,1)  (6,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Tuples[Range[n],2],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]=={}&]],{n,0,30}]

Formula

a(n) = 2 * A325103(n).
Showing 1-10 of 17 results. Next