cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325105 Number of binary carry-connected subsets of {1...n}.

Original entry on oeis.org

1, 2, 3, 7, 8, 20, 48, 112, 113, 325, 777, 1737, 3709, 7741, 15869, 32253, 32254, 96538, 225798, 485702, 1006338, 2049602, 4137346, 8315266, 16697102, 33465934, 67007886, 134100366, 268301518, 536720590, 1073575118, 2147316942, 2147316943, 6441886323
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. A subset is binary carry-connected if the graph whose vertices are the elements and whose edges are binary carries is connected.

Examples

			The a(0) = 1 through a(4) = 8 subsets:
  {}  {}   {}   {}       {}
      {1}  {1}  {1}      {1}
           {2}  {2}      {2}
                {3}      {3}
                {1,3}    {4}
                {2,3}    {1,3}
                {1,2,3}  {2,3}
                         {1,2,3}
		

Crossrefs

Programs

  • Maple
    h:= proc(n, s) local i, m; m:= n;
          for i in s do m:= Bits[Or](m, i) od; {m}
        end:
    g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union
                  h(n, w)))(select(x-> Bits[And](n, x)>0, s)):
    b:= proc(n, s) option remember; `if`(n=0,
          `if`(nops(s)>1, 0, 1), b(n-1, s)+b(n-1, g(n, s)))
        end:
    a:= n-> b(n, {}):
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 31 2019
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Range[n]],Length[csm[binpos/@#]]<=1&]],{n,0,10}]

Formula

a(n) = A306297(n,0) + A306297(n,1). - Alois P. Heinz, Mar 31 2019

Extensions

a(16)-a(33) from Alois P. Heinz, Mar 31 2019