cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A329139 Numbers whose prime signature is an aperiodic word.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2019

Keywords

Comments

First differs from A319161 in having 1260 = 2*2 * 3^2 * 5^1 * 7^1. First differs from A325370 in having 420 = 2^2 * 3^1 * 5^1 * 7^1.
A number's prime signature (A124010) is the sequence of positive exponents in its prime factorization.
A sequence is aperiodic if its cyclic rotations are all different.

Examples

			The sequence of terms together with their prime signatures begins:
   1: ()
   2: (1)
   3: (1)
   4: (2)
   5: (1)
   7: (1)
   8: (3)
   9: (2)
  11: (1)
  12: (2,1)
  13: (1)
  16: (4)
  17: (1)
  18: (1,2)
  19: (1)
  20: (2,1)
  23: (1)
  24: (3,1)
  25: (2)
  27: (3)
		

Crossrefs

Complement of A329140.
Aperiodic compositions are A000740.
Aperiodic binary words are A027375.
Numbers whose binary expansion is aperiodic are A328594.
Numbers whose prime signature is a Lyndon word are A329131.
Numbers whose prime signature is a necklace are A329138.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
    Select[Range[100],aperQ[Last/@FactorInteger[#]]&]

A325337 Numbers whose prime exponents are distinct and cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 163, 164
Offset: 1

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities covering an initial interval of positive integers. The enumeration of these partitions by sum is given by A320348.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  11: {5}
  12: {1,1,2}
  13: {6}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  28: {1,1,4}
  29: {10}
  31: {11}
  37: {12}
  41: {13}
  43: {14}
  44: {1,1,5}
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[100],UnsameQ@@Last/@FactorInteger[#]&&normQ[Last/@FactorInteger[#]]&]

A325369 Numbers with no two prime exponents appearing the same number of times in the prime signature.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The prime signature (A118914) is the multiset of exponents appearing in a number's prime factorization.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities appear with distinct multiplicities. The enumeration of these partitions by sum is given by A325329.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  28: {1,1,4}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
  50: {1,3,3}
  52: {1,1,6}
  54: {1,2,2,2}
  56: {1,1,1,4}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
  75: {2,3,3}
  76: {1,1,8}
  80: {1,1,1,1,3}
  88: {1,1,1,5}
For example, the prime indices of 1260 are {1,1,2,2,3,4}, whose multiplicities give the prime signature {1,1,2,2}, and since 1 and 2 appear the same number of times, 1260 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],UnsameQ@@Length/@Split[Sort[Last/@FactorInteger[#]]]&]

A325330 Number of integer partitions of n whose multiplicities have multiplicities that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 44, 55, 77, 96, 127, 158, 208, 251, 329, 400, 501, 610, 766, 915, 1141, 1368, 1677, 2005, 2454, 2913, 3553, 4219, 5110, 6053, 7300, 8644, 10376, 12238, 14645, 17216, 20504, 24047, 28501, 33336, 39373, 45871, 53926, 62745
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

Partitions whose parts cover an initial interval of positive integers are counted by A000009, with Heinz numbers A055932. Partitions whose multiplicities cover an initial interval of positive integers are counted by A317081, with Heinz numbers A317090. Partitions whose parts and multiplicities both cover an initial interval of positive integers are counted by A317088, with Heinz numbers A317089. Partitions whose multiplicities at every depth cover an initial interval of positive integers are counted by A317245, with Heinz numbers A317246.
The Heinz numbers of these partitions are given by A325370.

Examples

			The a(0) = 1 through a(8) = 16 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (221)    (33)      (322)      (44)
                        (211)   (311)    (222)     (331)      (332)
                        (1111)  (2111)   (411)     (511)      (422)
                                (11111)  (3111)    (2221)     (611)
                                         (21111)   (3211)     (2222)
                                         (111111)  (4111)     (3221)
                                                   (22111)    (4211)
                                                   (31111)    (5111)
                                                   (211111)   (22211)
                                                   (1111111)  (32111)
                                                              (41111)
                                                              (221111)
                                                              (311111)
                                                              (2111111)
                                                              (11111111)
For example, the partition (5,5,4,3,3,3,2,2) has multiplicities (2,1,3,2) with multiplicities (1,2,1) which cover the initial interval {1,2}, so (5,5,4,3,3,3,2,2) is counted under a(27).
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&]],{n,0,30}]

A325331 Number of integer partitions of n whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 7, 10, 14, 18, 30, 34, 44, 65, 73, 88, 110, 127, 155, 183, 202, 231, 277, 301, 339, 382, 430, 461, 551, 579, 681, 762, 896, 1010, 1255, 1406, 1752, 2061, 2555, 3001, 3783, 4437, 5512, 6611, 8056, 9539, 11668, 13692, 16515, 19435, 23098
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

Partitions with distinct multiplicities that cover an initial interval of positive integers are counted by A320348, with Heinz numbers A325337. Partitions whose multiplicities appear with distinct multiplicities are counted by A325329, with Heinz numbers A325369. Partitions whose multiplicities appear with multiplicities that cover an initial interval of positive integers of counted by A325330, with Heinz numbers A325370.
The Heinz numbers of these partitions are given by A325371.

Examples

			The a(0) = 1 through a(8) = 7 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (11111)  (33)      (3211)     (44)
                        (1111)           (222)     (1111111)  (2222)
                                         (111111)             (3221)
                                                              (4211)
                                                              (32111)
                                                              (11111111)
For example, the partition p = (5,5,4,3,3,3,2,2) has multiplicities (2,3,1,2), which appear with multiplicities (1,2,1), which cover an initial interval but are not distinct, so p is not counted under a(27). The partition q = (5,5,5,4,4,4,3,3,2,2,1,1) has multiplicities (3,3,2,2,2), which appear with multiplicities (3,2), which are distinct but do not cover an initial interval, so q is not counted under a(39). The partition r = (3,3,2,1,1) has multiplicities (2,1,2), which appear with multiplicities (1,2), which are distinct and cover an initial interval, so r is counted under a(10).
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&&UnsameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]

A325371 Numbers whose prime signature has multiplicities of its parts all distinct and covering an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 107, 109, 113, 120, 121, 125, 126, 127, 128, 131, 132, 137, 139, 140, 149, 150, 151, 156, 157, 163
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The first term that is not 1 or a prime power is 60.
The prime signature (A118914) is the multiset of exponents appearing in a number's prime factorization.
Numbers whose prime signature has distinct parts that cover an initial interval are given by A325337.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325331.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[100],normQ[Length/@Split[Sort[Last/@FactorInteger[#]]]]&&UnsameQ@@Length/@Split[Sort[Last/@FactorInteger[#]]]&]

A325373 Composite totally abnormal numbers. Heinz numbers of non-singleton totally abnormal integer partitions.

Original entry on oeis.org

9, 25, 27, 49, 81, 100, 121, 125, 169, 196, 225, 243, 289, 343, 361, 441, 484, 529, 625, 676, 729, 841, 961, 1000, 1089, 1156, 1225, 1331, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2187, 2197, 2209, 2401, 2601, 2744, 2809, 3025, 3125, 3249, 3364, 3375, 3481
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The first term that is not a perfect power (A001597) is 11880, with prime indices {1,1,1,2,2,2,3,5} and prime signature {1,1,3,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number n is totally abnormal iff (1) the prime indices of n do not cover an initial interval of positive integers, and either (2a) n is prime, or (2b) the prime exponents (or prime signature) of n forms a totally abnormal integer partition, or, equivalently to (2b), A181819(n) is totally abnormal.
The enumeration of totally abnormal integer partitions by sum is given by A325332.

Examples

			The sequence of terms together with their prime indices begins:
     9: {2,2}
    25: {3,3}
    27: {2,2,2}
    49: {4,4}
    81: {2,2,2,2}
   100: {1,1,3,3}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   196: {1,1,4,4}
   225: {2,2,3,3}
   243: {2,2,2,2,2}
   289: {7,7}
   343: {4,4,4}
   361: {8,8}
   441: {2,2,4,4}
   484: {1,1,5,5}
   529: {9,9}
   625: {3,3,3,3}
   676: {1,1,6,6}
		

Crossrefs

Programs

  • Mathematica
    normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
    totabnQ[n_]:=And[!normQ[n],PrimeQ[n]||totabnQ[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]];
    Select[Range[10000],!PrimeQ[#]&&totabnQ[#]&]
Showing 1-7 of 7 results.