A325459 Sum of numbers of nontrivial divisors (greater than 1 and less than k) of k for k = 1..n.
0, 0, 0, 0, 1, 1, 3, 3, 5, 6, 8, 8, 12, 12, 14, 16, 19, 19, 23, 23, 27, 29, 31, 31, 37, 38, 40, 42, 46, 46, 52, 52, 56, 58, 60, 62, 69, 69, 71, 73, 79, 79, 85, 85, 89, 93, 95, 95, 103, 104, 108, 110, 114, 114, 120, 122, 128, 130, 132, 132, 142
Offset: 0
Keywords
Examples
The a(4) = 1 through a(10) = 8 partitions: (22) (221) (33) (331) (44) (333) (55) (222) (2221) (2222) (441) (3331) (2211) (22111) (3311) (22221) (4411) (22211) (33111) (22222) (221111) (222111) (222211) (2211111) (331111) (2221111) (22111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 0, numtheory[tau](n)-2+a(n-1)) end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 11 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,y__,1...}/;x>1&&SameQ[x,y]]&]],{n,0,30}] (* Second program: *) a[n_] := a[n] = If[n<2, 0, DivisorSigma[0, n] - 2 + a[n-1]]; a /@ Range[0, 100] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
-
Python
from math import isqrt def A325459(n): return 0 if n == 0 else (lambda m: 2*(sum(n//k for k in range(1, m+1))-n)+(1-m)*(1+m))(isqrt(n)) # Chai Wah Wu, Oct 07 2021
Formula
From M. F. Hasler, Oct 11 2019: (Start)
a(n) = A006218(n) - 2*n + 1, in terms of partial sums of number of divisors.
Extensions
Name changed at the suggestion of Patrick James Smalley-Wall and Luc Rousseau by Gus Wiseman, Oct 11 2019
Comments