cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129654 Number of different ways to represent n as general polygonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)) = n>1, for m,r>1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 3, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 5, 2, 2, 3, 3, 2, 3, 2, 2, 5, 3, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 3, 2, 3, 2, 2, 3, 4, 3, 5, 2, 2, 3, 4, 2, 3, 2, 2, 4, 3, 2, 4, 2, 2, 5, 3, 2, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 5, 3
Offset: 2

Views

Author

Alexander Adamchuk, Apr 27 2007

Keywords

Comments

The indices k of the first appearance of number n in a(k) are listed in A063778(n) = {2,3,6,15,36,225,...} = Least number k>1 such that k could be represented in n different ways as general m-gonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)).
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n whose augmented differences are all equal, where the augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k; for example aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Equivalently, a(n) is the number of integer partitions of n whose differences are all equal to the last part minus one. The Heinz numbers of these partitions are given by A307824. For example, the a(35) = 5 partitions are:
(35)
(23,12)
(11,9,7,5,3)
(8,7,6,5,4,3,2)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
(End)

Examples

			a(6) = 3 because 6 = P(2,6) = P(3,3) = P(6,2).
		

Crossrefs

Programs

  • Maple
    A129654 := proc(n) local resul, dvs, i, r, m ;
       dvs := numtheory[divisors](2*n) ;
       resul := 0 ;
       for i from 1 to nops(dvs) do
          r := op(i, dvs) ;
          if r > 1 then
             m := (2*n/r-4+2*r)/(r-1) ;
             if is(m, integer) then
                resul := resul+1 ;
             fi ;
          fi ;
       od ;
       RETURN(resul) ;
    end: # R. J. Mathar, May 14 2007
  • Mathematica
    a[n_] := (dvs = Divisors[2*n]; resul = 0; For[i = 1, i <= Length[dvs], i++, r = dvs[[i]]; If[r > 1, m = (2*n/r-4+2*r)/(r-1); If[IntegerQ[m], resul = resul+1 ] ] ]; resul); Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Sep 13 2012, translated from R. J. Mathar's Maple program *)
    Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]], {n, 2, 106}] (* Jonathan Sondow, May 09 2014 *)
    atpms[n_]:=Select[Join@@Table[i*Range[k,1,-1],{k,n},{i,0,n}],Total[#+1]==n&];
    Table[Length[atpms[n]],{n,100}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(2*n, d, (d>1) && (2*n/d + 2*d - 4) % (d-1) == 0); \\ Daniel Suteu, Dec 22 2018

Formula

a(n) = A177025(n) + 1.
G.f.: x * Sum_{k>=1} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020

A325359 Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0.

Original entry on oeis.org

9, 18, 25, 27, 36, 49, 50, 54, 72, 81, 98, 100, 108, 121, 125, 144, 162, 169, 196, 200, 216, 242, 243, 250, 288, 289, 324, 338, 343, 361, 392, 400, 432, 484, 486, 500, 529, 576, 578, 625, 648, 676, 686, 722, 729, 784, 800, 841, 864, 961, 968, 972, 1000, 1058
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

Also Heinz numbers of integer partitions that are not hooks but whose augmented differences are hooks, where the Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k), and a hook is a partition of the form (n,1,1,...,1). The enumeration of these partitions by sum is given by A325459.

Examples

			The sequence of terms together with their prime indices begins:
     9: {2,2}
    18: {1,2,2}
    25: {3,3}
    27: {2,2,2}
    36: {1,1,2,2}
    49: {4,4}
    50: {1,3,3}
    54: {1,2,2,2}
    72: {1,1,1,2,2}
    81: {2,2,2,2}
    98: {1,4,4}
   100: {1,1,3,3}
   108: {1,1,2,2,2}
   121: {5,5}
   125: {3,3,3}
   144: {1,1,1,1,2,2}
   162: {1,2,2,2,2}
   169: {6,6}
   196: {1,1,4,4}
   200: {1,1,1,3,3}
		

Crossrefs

Positions of 2's in A325355.
Numbers n such that n does not belong to A093641 but A325351(n) does.

Programs

  • Maple
    N:= 1000: # to get terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N)),2)]):
    B:= map(proc(p) local y;  seq(p^y, y=2..floor(log[p](N))) end proc, P):
    sort(map(proc(t) local z;  seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # Robert Israel, May 03 2019
  • Mathematica
    Select[Range[1000],MatchQ[FactorInteger[2*#],{{2,},{?(#>2&),_?(#>1&)}}]&]

Formula

Sum_{n>=1} 1/a(n) = 2 * Sum_{p prime} 1/(p*(p-1)) - 1 = 2 * A136141 - 1 = 0.54631333809959025572... - Amiram Eldar, Sep 30 2020

A325458 Triangle read by rows where T(n,k) is the number of integer partitions of n with largest hook of size k, i.e., with (largest part) + (number of parts) - 1 = k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 3, 6, 0, 0, 0, 0, 0, 4, 4, 7, 0, 0, 0, 0, 0, 3, 6, 5, 8, 0, 0, 0, 0, 0, 1, 6, 8, 6, 9, 0, 0, 0, 0, 0, 0, 6, 9, 10, 7, 10, 0, 0, 0, 0, 0, 0, 2, 11, 12, 12, 8, 11
Offset: 0

Views

Author

Gus Wiseman, May 04 2019

Keywords

Comments

Conjectured to be equal to A049597.

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  0  3
  0  0  0  1  4
  0  0  0  0  2  5
  0  0  0  0  2  3  6
  0  0  0  0  0  4  4  7
  0  0  0  0  0  3  6  5  8
  0  0  0  0  0  1  6  8  6  9
  0  0  0  0  0  0  6  9 10  7 10
  0  0  0  0  0  0  2 11 12 12  8 11
  0  0  0  0  0  0  2  9 16 15 14  9 12
  0  0  0  0  0  0  0  7 16 21 18 16 10 13
  0  0  0  0  0  0  0  4 18 23 26 21 18 11 14
  0  0  0  0  0  0  0  3 12 29 30 31 24 20 12 15
  0  0  0  0  0  0  0  1 12 27 40 37 36 27 22 13 16
  0  0  0  0  0  0  0  0  8 26 42 51 44 41 30 24 14 17
  0  0  0  0  0  0  0  0  6 23 48 57 62 51 46 33 26 15 18
  0  0  0  0  0  0  0  0  2 21 44 70 72 73 58 51 36 28 16 19
Row n = 9 counts the following partitions:
  (333)  (54)     (63)      (72)       (9)
         (432)    (522)     (621)      (81)
         (441)    (531)     (5211)     (711)
         (3222)   (4221)    (42111)    (6111)
         (3321)   (4311)    (321111)   (51111)
         (22221)  (32211)   (2211111)  (411111)
                  (33111)              (3111111)
                  (222111)             (21111111)
                                       (111111111)
		

Crossrefs

Row sums are A000041.
Column sums are 2^(k - 1) for k > 0.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],If[n==0,k==0,First[#]+Length[#]-1==k]&]],{n,0,19},{k,0,n}]

Formula

Franklin T. Adams-Watters has conjectured at A049597 that the k-th column gives the coefficients of the sum of Gaussian polynomials [k,m] for m = 0..k.
Showing 1-3 of 3 results.