A325388
Heinz numbers of strict integer partitions with distinct differences (with the last part taken to be 0).
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
35: {3,4}
Cf.
A056239,
A112798,
A320348,
A325324,
A325327,
A325362,
A325364,
A325366,
A325367,
A325368,
A325390,
A325405,
A325460,
A325461,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Differences[Append[primeptn[#],0]]&]
A325405
Heinz numbers of integer partitions y such that the k-th differences of y are distinct for all k >= 0 and are disjoint from the i-th differences for i != k.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
35: {3,4}
Cf.
A056239,
A112798,
A279945,
A325325,
A325366,
A325367,
A325368,
A325397,
A325398,
A325399,
A325400,
A325404,
A325406,
A325467.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],UnsameQ@@Join@@Table[Differences[primeMS[#],k],{k,0,PrimeOmega[#]}]&]
A325468
Number of integer partitions y of n such that the k-th differences of y are distinct (independently) for all k >= 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 17, 19, 24, 31, 26, 40, 43, 51, 52, 72, 66, 89, 88, 111, 119, 150, 130, 183, 193, 229, 231, 279, 287, 358, 365, 430, 426, 538, 535, 649, 680, 742, 803, 943, 982, 1136, 1115
Offset: 0
The a(1) = 1 through a(9) = 6 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(41) (51) (52) (62) (63)
(61) (71) (72)
(421) (431) (81)
(521) (621)
Cf.
A000009,
A325324,
A325325,
A325349,
A325353,
A325354,
A325391,
A325393,
A325404,
A325406,
A325467.
-
Table[Length[Select[IntegerPartitions[n],And@@Table[UnsameQ@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]
A325398
Heinz numbers of reversed integer partitions whose k-th differences are strictly increasing for all k >= 0.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
Cf.
A056239,
A112798,
A325357,
A325391,
A325395,
A325397,
A325399,
A325400,
A325405,
A325406,
A325456,
A325467.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And@@Table[Less@@Differences[primeMS[#],k],{k,0,PrimeOmega[#]}]&]
A325400
Heinz numbers of reversed integer partitions whose k-th differences are weakly increasing for all k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74
Offset: 1
Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
18: {1,2,2}
36: {1,1,2,2}
50: {1,3,3}
54: {1,2,2,2}
60: {1,1,2,3}
70: {1,3,4}
72: {1,1,1,2,2}
75: {2,3,3}
90: {1,2,2,3}
98: {1,4,4}
100: {1,1,3,3}
108: {1,1,2,2,2}
120: {1,1,1,2,3}
126: {1,2,2,4}
140: {1,1,3,4}
144: {1,1,1,1,2,2}
147: {2,4,4}
150: {1,2,3,3}
154: {1,4,5}
162: {1,2,2,2,2}
Cf.
A007294,
A056239,
A112798,
A240026,
A325354,
A325360,
A325362,
A325394,
A325397,
A325398,
A325399,
A325405,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],And@@Table[Greater@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]
A325399
Heinz numbers of integer partitions whose k-th differences are strictly decreasing for all k >= 0.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
Cf.
A056239,
A112798,
A320466,
A320470,
A325358,
A325391,
A325393,
A325396,
A325397,
A325398,
A325400,
A325405,
A325457,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],And@@Table[Greater@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]
A325397
Heinz numbers of integer partitions whose k-th differences are weakly decreasing for all k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1
Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
52: {1,1,6}
56: {1,1,1,4}
60: {1,1,2,3}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
72: {1,1,1,2,2}
76: {1,1,8}
78: {1,2,6}
80: {1,1,1,1,3}
The first partition that has weakly decreasing differences (A320466, A325361) but is not represented in this sequence is (3,3,2,1), which has Heinz number 150 and whose first and second differences are (0,-1,-1) and (-1,0) respectively.
Cf.
A056239,
A112798,
A320466,
A320509,
A325353,
A325361,
A325364,
A325389,
A325398,
A325399,
A325400,
A325405,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],And@@Table[GreaterEqual@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]
Showing 1-7 of 7 results.
Comments