cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325469 a(n) is the number of divisors d of n such that d divides sigma(d).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 16 2019

Keywords

Comments

Sequence of the smallest numbers m with n divisors d such that d divides sigma(d) for n >= 1: 1, 6, 84, 672, 3360, 30240, 393120, ...

Examples

			For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 2.
		

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], #] &];  Array[a, 100] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    a(n)={sumdiv(n, d, sigma(d) % d == 0)} \\ Andrew Howroyd, Aug 16 2019

Formula

a(A097603(n)) > 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A335830. - Amiram Eldar, Apr 16 2025

Extensions

More terms from Antti Karttunen, Aug 22 2019