cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A325557 Number of compositions of n with equal differences up to sign.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 13, 12, 20, 24, 25, 29, 49, 40, 50, 64, 86, 80, 105, 102, 164, 175, 186, 208, 325, 316, 382, 476, 624, 660, 814, 961, 1331, 1500, 1739, 2140, 2877, 3274, 3939, 4901, 6345, 7448, 9054, 11157, 14315, 17181, 20769, 25843, 32947, 39639, 48257, 60075
Offset: 0

Views

Author

Gus Wiseman, May 11 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(8) = 20 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (121)   (41)     (42)      (43)       (44)
                    (1111)  (131)    (51)      (52)       (53)
                            (212)    (123)     (61)       (62)
                            (11111)  (141)     (151)      (71)
                                     (222)     (232)      (161)
                                     (321)     (313)      (242)
                                     (1212)    (12121)    (323)
                                     (2121)    (1111111)  (1232)
                                     (111111)             (1313)
                                                          (2123)
                                                          (2222)
                                                          (2321)
                                                          (3131)
                                                          (3212)
                                                          (21212)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Abs[Differences[#]]&]],{n,0,15}]
  • PARI
    step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
    w(n,s)={my(R=matid(n), t=0); while(R, R=step(R,n,s); t+=vecsum(R[n,])); t}
    a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, w(n,s))} \\ Andrew Howroyd, Aug 22 2019

Extensions

a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019

A325546 Number of compositions of n with weakly increasing differences.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 19, 28, 41, 62, 87, 120, 170, 228, 303, 408, 534, 689, 899, 1145, 1449, 1842, 2306, 2863, 3571, 4398, 5386, 6610, 8039, 9716, 11775, 14157, 16938, 20293, 24166, 28643, 33995, 40134, 47199, 55540, 65088, 75994, 88776, 103328, 119886, 139126
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

Also compositions of n whose plot is concave-up.
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (112)   (41)     (42)
                    (211)   (113)    (51)
                    (1111)  (212)    (114)
                            (311)    (123)
                            (1112)   (213)
                            (2111)   (222)
                            (11111)  (312)
                                     (321)
                                     (411)
                                     (1113)
                                     (2112)
                                     (3111)
                                     (11112)
                                     (21111)
                                     (111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Differences[#]&]],{n,0,15}]
  • PARI
    \\ Row sums of R(n) give A007294 (=breakdown by width).
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-w-1)\t + 1, v[i-w-(k-1)*t]))); Mat(L)}
    seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w])));  x^i/(1 - x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 28 2019

Extensions

More terms from Alois P. Heinz, May 11 2019

A325547 Number of compositions of n with strictly increasing differences.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 11, 18, 24, 30, 45, 57, 71, 96, 120, 148, 192, 235, 286, 354, 431, 518, 628, 752, 893, 1063, 1262, 1482, 1744, 2046, 2386, 2775, 3231, 3733, 4305, 4977, 5715, 6536, 7507, 8559, 9735, 11112, 12608, 14252, 16177, 18265, 20553, 23204, 26090, 29223
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(6) = 11 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)
       (11)  (12)  (13)   (14)   (15)
             (21)  (22)   (23)   (24)
                   (31)   (32)   (33)
                   (112)  (41)   (42)
                   (211)  (113)  (51)
                          (212)  (114)
                          (311)  (213)
                                 (312)
                                 (411)
                                 (2112)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Differences[#]&]],{n,0,15}]
  • PARI
    \\ Row sums of R(n) give A179269 (breakdown by width)
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, v[i-k*t]))); Mat(L)}
    seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w])));  x^i*(1 + x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 27 2019

Extensions

a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 27 2019

A325548 Number of compositions of n with strictly decreasing differences.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 10, 13, 19, 23, 29, 38, 46, 55, 69, 80, 96, 115, 132, 154, 183, 207, 238, 276, 314, 356, 405, 455, 513, 579, 647, 724, 809, 897, 998, 1107, 1225, 1350, 1486, 1639, 1805, 1973, 2166, 2374, 2586, 2824, 3084, 3346, 3646, 3964, 4286, 4655, 5047
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(8) = 19 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)     (7)    (8)
       (11)  (12)  (13)   (14)   (15)    (16)   (17)
             (21)  (22)   (23)   (24)    (25)   (26)
                   (31)   (32)   (33)    (34)   (35)
                   (121)  (41)   (42)    (43)   (44)
                          (122)  (51)    (52)   (53)
                          (131)  (132)   (61)   (62)
                          (221)  (141)   (133)  (71)
                                 (231)   (142)  (134)
                                 (1221)  (151)  (143)
                                         (232)  (152)
                                         (241)  (161)
                                         (331)  (233)
                                                (242)
                                                (251)
                                                (332)
                                                (341)
                                                (431)
                                                (1331)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l, d) option remember; `if`(n=0, 1, add(`if`(l=0 or
           j-l b(n, 0$2):
    seq(a(n), n=0..52);  # Alois P. Heinz, Jan 27 2024
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Differences[#]&]],{n,0,15}]

Extensions

a(26)-a(44) from Lars Blomberg, May 30 2019
a(45)-a(52) from Alois P. Heinz, Jan 27 2024

A325553 Number of compositions of n with distinct circular differences up to sign.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 21, 31, 41, 87, 99, 191, 245, 381, 501, 735, 883, 1309, 1841, 2589, 3435, 4941, 6857, 9791, 13503, 19475, 27073, 37175, 52299, 72249, 100359, 139317, 190549, 256769, 355193, 471963, 644433, 858793, 1159161, 1530879, 2056073, 2711921
Offset: 0

Views

Author

Gus Wiseman, May 11 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).

Examples

			The a(1) = 1 through a(8) = 21 compositions:
  (1)  (2)  (3)  (4)  (5)  (6)  (7)    (8)
                                (124)  (125)
                                (142)  (134)
                                (214)  (143)
                                (241)  (152)
                                (412)  (215)
                                (421)  (251)
                                       (314)
                                       (341)
                                       (413)
                                       (431)
                                       (512)
                                       (521)
                                       (1124)
                                       (1142)
                                       (1241)
                                       (1421)
                                       (2114)
                                       (2411)
                                       (4112)
                                       (4211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Abs[Differences[Append[#,First[#]]]]&]],{n,20}]

Extensions

a(0) and a(26)-a(43) from Alois P. Heinz, Jan 28 2024

A325555 Number of necklace compositions of n with distinct differences up to sign.

Original entry on oeis.org

1, 2, 2, 4, 5, 6, 10, 15, 19, 24, 39, 49, 78, 106, 155, 207, 313, 430, 608, 867, 1239, 1670, 2313, 3220, 4483
Offset: 1

Views

Author

Gus Wiseman, May 11 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(8) = 15 necklace compositions:
  (1)  (2)   (3)   (4)    (5)    (6)    (7)     (8)
       (11)  (12)  (13)   (14)   (15)   (16)    (17)
                   (22)   (23)   (24)   (25)    (26)
                   (112)  (113)  (33)   (34)    (35)
                          (122)  (114)  (115)   (44)
                                 (132)  (124)   (116)
                                        (133)   (125)
                                        (142)   (134)
                                        (223)   (143)
                                        (1132)  (152)
                                                (224)
                                                (233)
                                                (1124)
                                                (1142)
                                                (1322)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Abs[Differences[#]]&&neckQ[#]&]],{n,15}]
Showing 1-6 of 6 results.