A325549
Number of necklace compositions of n with distinct circular differences.
Original entry on oeis.org
1, 1, 2, 3, 5, 4, 10, 16, 23, 34, 53, 66, 113, 164, 262, 380, 567, 821, 1217, 1778, 2702, 3919, 5760, 8520, 12375
Offset: 1
The a(1) = 1 through a(8) = 16 necklace compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(12) (13) (14) (15) (16) (17)
(112) (23) (24) (25) (26)
(113) (114) (34) (35)
(122) (115) (116)
(124) (125)
(133) (134)
(142) (143)
(223) (152)
(1213) (224)
(233)
(1124)
(1142)
(1214)
(11213)
(11312)
Cf.
A000079,
A000740,
A008965,
A034297,
A059966,
A070211,
A318728,
A318748,
A320348,
A325545,
A325551,
A325554,
A325556.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Append[Differences[#],First[#]-Last[#]]&]],{n,15}]
A325553
Number of compositions of n with distinct circular differences up to sign.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 7, 21, 31, 41, 87, 99, 191, 245, 381, 501, 735, 883, 1309, 1841, 2589, 3435, 4941, 6857, 9791, 13503, 19475, 27073, 37175, 52299, 72249, 100359, 139317, 190549, 256769, 355193, 471963, 644433, 858793, 1159161, 1530879, 2056073, 2711921
Offset: 0
The a(1) = 1 through a(8) = 21 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(124) (125)
(142) (134)
(214) (143)
(241) (152)
(412) (215)
(421) (251)
(314)
(341)
(413)
(431)
(512)
(521)
(1124)
(1142)
(1241)
(1421)
(2114)
(2411)
(4112)
(4211)
Cf.
A000079,
A008965,
A167606,
A173258,
A325324,
A325349,
A325545,
A325549,
A325551,
A325552,
A325553,
A325556,
A325558.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Abs[Differences[Append[#,First[#]]]]&]],{n,20}]
A325590
Number of necklace compositions of n with circular differences all equal to 1 or -1.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 3, 3, 4, 4, 5, 7, 6, 7, 10, 10, 11, 15, 16, 18, 23, 25, 32, 38, 43, 53, 64, 73, 89, 108, 131, 153, 188, 223, 272, 329, 395, 475, 583, 697, 848, 1027, 1247, 1506, 1837, 2223, 2708, 3282, 3993, 4848, 5913, 7175, 8745, 10640
Offset: 1
The first 16 terms count the following compositions:
3: (12)
5: (23)
6: (1212)
7: (34)
8: (1232)
9: (45)
9: (121212)
10: (2323)
11: (56)
11: (121232)
12: (2343)
12: (12121212)
13: (67)
13: (123232)
14: (3434)
14: (12121232)
15: (78)
15: (123432)
15: (232323)
15: (1212121212)
16: (3454)
16: (12321232)
16: (12123232)
The a(21) = 7 necklace compositions:
(10,11)
(2,3,4,5,4,3)
(3,4,3,4,3,4)
(1,2,1,2,1,2,3,4,3,2)
(1,2,3,2,1,2,3,2,3,2)
(1,2,1,2,3,2,3,2,3,2)
(1,2,1,2,1,2,1,2,1,2,1,2,1,2)
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&(SameQ[1,##]&@@Abs[Differences[Append[#,First[#]]]])&]],{n,15}]
-
step(R,n,s)={matrix(n,n,i,j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
a(n)={sum(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)==1), t=0, m=1); while(R, R=step(R,n,1); m++; t+=sumdiv(n, d, R[d,k]*d*eulerphi(n/d))/m ); t/n)} \\ Andrew Howroyd, Aug 23 2019
A325588
Number of necklace compositions of n with equal circular differences up to sign.
Original entry on oeis.org
1, 2, 3, 4, 4, 7, 5, 9, 8, 10, 8, 17, 9, 14, 15, 22, 12, 23, 14, 31, 23, 25, 19, 48, 25, 35, 36, 56, 33, 59, 43, 86, 64, 74, 76, 136, 95, 127, 138, 219, 178, 245, 249, 372, 370, 445, 506, 747, 730, 907, 1069, 1431, 1544, 1927, 2268, 2981, 3332, 4074, 4896, 6320
Offset: 1
The a(1) = 1 through a(8) = 9 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(111) (22) (23) (24) (25) (26)
(1111) (11111) (33) (34) (35)
(222) (1111111) (44)
(1212) (1232)
(111111) (1313)
(2222)
(11111111)
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&SameQ@@Abs[Differences[Append[#,First[#]]]]&]],{n,15}]
-
step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
w(n,s)={sum(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)==s), t=0, m=1); while(R, R=step(R,n,s); m++; t+=sumdiv(n, d, R[d,k]*d*eulerphi(n/d))/m ); t/n)}
a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, w(n,s))} \\ Andrew Howroyd, Aug 24 2019
A325555
Number of necklace compositions of n with distinct differences up to sign.
Original entry on oeis.org
1, 2, 2, 4, 5, 6, 10, 15, 19, 24, 39, 49, 78, 106, 155, 207, 313, 430, 608, 867, 1239, 1670, 2313, 3220, 4483
Offset: 1
The a(1) = 1 through a(8) = 15 necklace compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(22) (23) (24) (25) (26)
(112) (113) (33) (34) (35)
(122) (114) (115) (44)
(132) (124) (116)
(133) (125)
(142) (134)
(223) (143)
(1132) (152)
(224)
(233)
(1124)
(1142)
(1322)
Cf.
A000079,
A008965,
A235998,
A242882,
A325325,
A325352,
A325404,
A325468,
A325552,
A325554,
A325556.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Abs[Differences[#]]&&neckQ[#]&]],{n,15}]
Showing 1-5 of 5 results.
Comments