cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A325617 Multinomial coefficient of the prime signature of n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 20, 105, 840, 3960, 51480, 675675, 10810800, 139675536, 2793510720, 58663725120, 1799020903680, 26985313555200, 782574093100800, 25992639520848000, 857757104187984000, 30021498646579440000, 1563341744336692320000, 64179292662243158400000
Offset: 0

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Number of permutations of the multiset of prime factors of n!.

Examples

			The a(5) = 20 permutations of {2,2,2,3,5}:
  (22235)  (32225)  (52223)
  (22253)  (32252)  (52232)
  (22325)  (32522)  (52322)
  (22352)  (35222)  (53222)
  (22523)
  (22532)
  (23225)
  (23252)
  (23522)
  (25223)
  (25232)
  (25322)
		

Crossrefs

Programs

  • Mathematica
    Table[Multinomial@@Last/@FactorInteger[n!],{n,0,15}]

Formula

a(n) = A318762(A181819(n!)).

A325614 Unsorted q-signature of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 1, 1, 3, 2, 3, 1, 3, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 2, 2, 2, 3, 1, 1, 3, 3, 4, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 3, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Row n lists the nonzero multiplicities in the q-factorization of n, in order of q-index. For example, row 11 is (1,1,1,1) and row 360 is (6,3,1).

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  2 1
  2 1
  3
  2 2
  2 1 1
  1 1 1 1
  3 1
  2 1 1
  3 1
  2 2 1
  4
  2 1 1
  3 2
  3 1
  3 1 1
		

Crossrefs

Row lengths are A324923.
Row sums are A196050.
Row-maxima are A109129.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length/@Split[difac[n]],{n,30}]

A325615 Sorted q-signature of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 1, 2, 2, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 2, 1, 1, 3, 3, 3, 1, 4, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Row n is the multiset of nonzero multiplicities in the q-factorization of n. For example, row 11 is (1,1,1,1) and row 360 is (1,3,6).

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  1 2
  1 2
  3
  2 2
  1 1 2
  1 1 1 1
  1 3
  1 1 2
  1 3
  1 2 2
  4
  1 1 2
  2 3
  1 3
  1 1 3
		

Crossrefs

Row lengths are A324923.
Row sums are A196050.
Row-maxima are A109129.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Sort[Length/@Split[difac[n]]],{n,30}]
Showing 1-3 of 3 results.