cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A325660 Number of ones in the q-signature of n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 1, 0, 0, 2, 4, 1, 2, 1, 1, 0, 2, 0, 1, 2, 2, 3, 1, 1, 0, 2, 0, 1, 3, 1, 5, 0, 2, 2, 3, 0, 2, 1, 1, 2, 3, 2, 2, 3, 1, 1, 2, 1, 0, 0, 3, 2, 1, 0, 1, 1, 2, 3, 3, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 3, 3, 0, 3, 2, 0, 1, 4, 1, 4, 2, 0, 3, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Then a(n) is the number of factors of multiplicity one in the q-factorization of n.
Also the number of rooted trees appearing only once in the multiset of terminal subtrees of the rooted tree with Matula-Goebel number n.

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Count[Length/@Split[difac[n]],1],{n,100}]

A325615 Sorted q-signature of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 1, 2, 2, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 2, 1, 1, 3, 3, 3, 1, 4, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Row n is the multiset of nonzero multiplicities in the q-factorization of n. For example, row 11 is (1,1,1,1) and row 360 is (1,3,6).

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  1 2
  1 2
  3
  2 2
  1 1 2
  1 1 1 1
  1 3
  1 1 2
  1 3
  1 2 2
  4
  1 1 2
  2 3
  1 3
  1 1 3
		

Crossrefs

Row lengths are A324923.
Row sums are A196050.
Row-maxima are A109129.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Sort[Length/@Split[difac[n]]],{n,30}]

A325613 Full q-signature of n. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the q-factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 3, 1, 2, 1, 0, 0, 0, 1, 3, 0, 0, 1, 2, 2, 1, 4, 2, 0, 0, 1, 0, 0, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 3, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 4, 1, 2, 2, 2, 3, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n.

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  2 1
  2 0 0 1
  3
  2 2
  2 1 1
  1 1 1 0 1
  3 1
  2 1 0 0 0 1
  3 0 0 1
  2 2 1
  4
  2 0 0 1 0 0 1
  3 2
  3 0 0 0 0 0 0 1
  3 1 1
		

Crossrefs

Row lengths are A061395.
Row sums are A196050.
Row-maxima are A109129.
The number whose full prime signature is the n-th row is A324922(n).
Cf. A067255.
Matula-Goebel numbers: A007097, A061775, A109082, A317713.
q-factorization: A324923, A324924, A325613, A325614, A325615, A325660.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    qsig[n_]:=If[n==1,{},With[{ms=difac[n]},Table[Count[ms,i],{i,Max@@ms}]]];
    Table[qsig[n],{n,30}]

A325609 Unsorted q-signature of n!. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the factorization of n! into factors q(i) = prime(i)/i.

Original entry on oeis.org

1, 2, 1, 4, 1, 5, 2, 1, 7, 3, 1, 9, 3, 1, 1, 12, 3, 1, 1, 14, 5, 1, 1, 16, 6, 2, 1, 17, 7, 3, 1, 1, 20, 8, 3, 1, 1, 22, 9, 3, 1, 1, 1, 25, 9, 3, 2, 1, 1, 27, 11, 4, 2, 1, 1, 31, 11, 4, 2, 1, 1, 33, 11, 4, 3, 1, 1, 1, 36, 13, 4, 3, 1, 1, 1, 39, 13, 4, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Row n is the sequence of nonzero exponents in the q-factorization of n!.
Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n!.

Examples

			We have 10! = q(1)^16 q(2)^6 q(3)^2 q(4), so row n = 10 is (16,6,2,1).
Triangle begins:
  {}
   1
   2  1
   4  1
   5  2  1
   7  3  1
   9  3  1  1
  12  3  1  1
  14  5  1  1
  16  6  2  1
  17  7  3  1  1
  20  8  3  1  1
  22  9  3  1  1  1
  25  9  3  2  1  1
  27 11  4  2  1  1
  31 11  4  2  1  1
  33 11  4  3  1  1  1
  36 13  4  3  1  1  1
  39 13  4  3  1  1  1  1
  42 14  5  3  1  1  1  1
		

Crossrefs

Row lengths are A000720.
Row sums are A325544(n) - 1.
Column k = 1 is A325543.
Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713, A324935.
Factorial numbers: A000142, A011371, A022559, A071626, A115627, A325276.
q-factorization: A324922, A324923, A324924, A325614, A325615, A325660.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length/@Split[difac[n!]],{n,20}]

A325662 Matula-Goebel numbers of regular rooted stars.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 16, 25, 27, 31, 32, 64, 81, 121, 125, 127, 128, 243, 256, 512, 625, 709, 729, 961, 1024, 1331, 2048, 2187, 3125, 4096, 5381, 6561, 8192, 14641, 15625, 16129, 16384, 19683, 29791, 32768, 52711, 59049, 65536, 78125, 131072, 161051
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Powers of members of A007097.
A regular rooted star is a rooted tree whose branches are all rooted paths of equal length.
The number of terms <= 10^k, k=0,1,2,...: 1, 7, 15, 26, 35, 46, 56, 67, 76, 87, 98, 109, 121, 131, 142, 154, 163, 175, 185, 198, 208, 220, 231, 241, 254, 265, 275, etc. - Robert G. Wilson v, May 13 2019

Examples

			The sequence of regular rooted stars together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    3: ((o))
    4: (oo)
    5: (((o)))
    8: (ooo)
    9: ((o)(o))
   11: ((((o))))
   16: (oooo)
   25: (((o))((o)))
   27: ((o)(o)(o))
   31: (((((o)))))
   32: (ooooo)
   64: (oooooo)
   81: ((o)(o)(o)(o))
  121: ((((o)))(((o))))
  125: (((o))((o))((o)))
  127: ((((((o))))))
  128: (ooooooo)
		

Crossrefs

Programs

  • Mathematica
    rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]];
    Select[Range[100],#==1||PrimePowerQ[#]&&rpQ[FactorInteger[#][[1,1]]]&]
    (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[emax]; s = Union[s, s1], {k, 2, Length[ps]}]; s]; seq[10] (* Amiram Eldar, Jul 26 2024 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Product_{k>=1} 1/(A007097(k)-1) = 2.8928887669834086909... - Amiram Eldar, Jul 26 2024

A325663 Matula-Goebel numbers of not necessarily regular rooted stars.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 36, 40, 44, 45, 48, 50, 54, 55, 60, 62, 64, 66, 72, 75, 80, 81, 88, 90, 93, 96, 99, 100, 108, 110, 120, 121, 124, 125, 127, 128, 132, 135, 144, 150, 155, 160, 162, 165, 176
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Products of members of A007097.
A rooted star is a rooted tree whose branches are all rooted paths.

Examples

			The sequence of rooted stars together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  15: ((o)((o)))
  16: (oooo)
  18: (o(o)(o))
  20: (oo((o)))
  22: (o(((o))))
  24: (ooo(o))
  25: (((o))((o)))
  27: ((o)(o)(o))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]];
    Select[Range[100],And@@rpQ/@First/@FactorInteger[#]&]
    (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1, s2}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[0, emax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= pmax &]; s = Union[s, s2], {k, 2, Length[ps]}]; s]; seq[7] (* Amiram Eldar, Jul 26 2024 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{k>=1} A007097(k)/(A007097(k)-1) = 4.30328607286382284593... . - Amiram Eldar, Jul 26 2024

A325608 Numbers whose factorization into factors prime(i)/i does not have weakly decreasing nonzero multiplicities.

Original entry on oeis.org

147, 245, 294, 357, 490, 511, 539, 588, 595, 637, 681, 714, 735, 845, 847, 853, 867, 903, 980, 1022, 1029, 1043, 1078, 1083, 1135, 1176, 1183, 1190, 1239, 1241, 1267, 1274, 1309, 1362, 1421, 1428, 1445, 1470, 1505, 1519, 1547, 1553, 1563, 1617, 1631, 1690
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example, 147 = q(1)^5 q(2) q(4)^2 has multiplicities (5,1,2), which are not weakly decreasing, so 147 belongs to the sequence.

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Select[Range[1000],!GreaterEqual@@Length/@Split[difac[#]]&]
Showing 1-7 of 7 results.