A325830 Number of integer partitions of 2*n having exactly 2*n submultisets.
0, 1, 1, 1, 3, 1, 10, 1, 21, 12, 15, 1, 121, 1, 20, 37, 309, 1, 319, 1, 309, 47, 33, 1, 3435, 30, 38, 405, 593, 1, 1574, 1, 11511, 80, 51, 77, 17552, 1, 56, 92, 13921, 1, 3060, 1, 1439, 2911, 69, 1, 234969, 56, 2044, 126, 1998, 1, 46488, 114, 36615, 137, 87, 1, 141906
Offset: 0
Keywords
Examples
The 12 submultisets of the partition (7221) are (), (1), (2), (7), (21), (22), (71), (72), (221), (721), (722), (7221), so (7221) is counted under a(6). The a(1) = 1 through a(8) = 21 partitions (A = 10, B = 11): (2) (31) (411) (431) (61111) (4332) (8111111) (6532) (521) (4431) (6541) (5111) (5322) (7432) (5331) (7531) (6411) (7621) (7221) (8431) (7311) (8521) (8211) (9421) (33222) (A321) (711111) (44431) (53332) (63331) (64222) (73222) (76111) (85111) (92221) (94111) (A3111) (B2111) (91111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..700 (first 101 terms from Andrew Howroyd)
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) end: a:= n-> `if`(isprime(n), 1, b(2*n$3)): seq(a(n), n=0..60); # Alois P. Heinz, Aug 16 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[2*n],Times@@(1+Length/@Split[#])==2*n&]],{n,0,30}] (* Second program: *) b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1); Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]]; a[n_] := If[PrimeQ[n], 1, b[2n, 2n, 2n]]; a /@ Range[0, 60] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
-
PARI
a(n)={if(n<1, 0, my(v=vector(2*n+1, k, vector(2*n))); v[1][1]=1; for(k=1, 2*n, forstep(j=#v, k, -1, for(m=1, (j-1)\k, for(i=1, 2*n\(m+1), v[j][i*(m+1)] += v[j-m*k][i])))); v[#v][2*n])} \\ Andrew Howroyd, Aug 16 2019
Formula
a(p) = 1 for prime p. - Andrew Howroyd, Aug 16 2019
Extensions
Terms a(31) and beyond from Andrew Howroyd, Aug 16 2019
Comments