cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325830 Number of integer partitions of 2*n having exactly 2*n submultisets.

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 10, 1, 21, 12, 15, 1, 121, 1, 20, 37, 309, 1, 319, 1, 309, 47, 33, 1, 3435, 30, 38, 405, 593, 1, 1574, 1, 11511, 80, 51, 77, 17552, 1, 56, 92, 13921, 1, 3060, 1, 1439, 2911, 69, 1, 234969, 56, 2044, 126, 1998, 1, 46488, 114, 36615, 137, 87, 1, 141906
Offset: 0

Views

Author

Gus Wiseman, May 25 2019

Keywords

Comments

If n is odd, there are no integer partitions of n with exactly n submultisets, so this sequence gives only the even-indexed terms.
The number of submultisets of an integer partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325793.

Examples

			The 12 submultisets of the partition (7221) are (), (1), (2), (7), (21), (22), (71), (72), (221), (721), (722), (7221), so (7221) is counted under a(6).
The a(1) = 1 through a(8) = 21 partitions (A = 10, B = 11):
  (2)  (31)  (411)  (431)   (61111)  (4332)    (8111111)  (6532)
                    (521)            (4431)               (6541)
                    (5111)           (5322)               (7432)
                                     (5331)               (7531)
                                     (6411)               (7621)
                                     (7221)               (8431)
                                     (7311)               (8521)
                                     (8211)               (9421)
                                     (33222)              (A321)
                                     (711111)             (44431)
                                                          (53332)
                                                          (63331)
                                                          (64222)
                                                          (73222)
                                                          (76111)
                                                          (85111)
                                                          (92221)
                                                          (94111)
                                                          (A3111)
                                                          (B2111)
                                                          (91111111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
          (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
        end:
    a:= n-> `if`(isprime(n), 1, b(2*n$3)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 16 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[2*n],Times@@(1+Length/@Split[#])==2*n&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
         If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1);
         Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];
    a[n_] := If[PrimeQ[n], 1, b[2n, 2n, 2n]];
    a /@ Range[0, 60] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
  • PARI
    a(n)={if(n<1, 0, my(v=vector(2*n+1, k, vector(2*n))); v[1][1]=1; for(k=1, 2*n, forstep(j=#v, k, -1, for(m=1, (j-1)\k, for(i=1, 2*n\(m+1), v[j][i*(m+1)] += v[j-m*k][i])))); v[#v][2*n])} \\ Andrew Howroyd, Aug 16 2019

Formula

a(p) = 1 for prime p. - Andrew Howroyd, Aug 16 2019

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 16 2019