A325828 Number of integer partitions of n having exactly n + 1 submultisets.
1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 12, 1, 3, 4, 21, 1, 14, 1, 18, 4, 3, 1, 116, 3, 3, 12, 25, 1, 40, 1, 271, 4, 3, 4, 325, 1, 3, 4, 295, 1, 56, 1, 36, 47, 3, 1, 3128, 4, 32, 4, 44, 1, 407, 4, 566, 4, 3, 1, 1598, 1, 3, 65, 10656, 5, 90, 1, 54, 4, 84, 1
Offset: 0
Keywords
Examples
The 12 = 11 + 1 submultisets of the partition (4331) are: (), (1), (3), (4), (31), (33), (41), (43), (331), (431), (433), (4331), so (4331) is counted under a(11). The a(5) = 3 through a(11) = 12 partitions: 221 111111 421 3311 22221 1111111111 4322 311 2221 11111111 51111 4331 11111 4111 111111111 4421 1111111 5411 6221 6311 7211 33311 44111 222221 611111 11111111111
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) end: a:= n-> b(n$2,n+1): seq(a(n), n=0..80); # Alois P. Heinz, Aug 17 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])-1==n&]],{n,0,30}] (* Second program: *) b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = Quotient[p, j + 1]; Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]]; a[n_] := b[n, n, n+1]; a /@ Range[0, 80] (* Jean-François Alcover, May 11 2021, after Alois P. Heinz *)
Comments