cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325911 Screaming numbers in base 16: numbers whose hexadecimal representation is AAAAAAA...

Original entry on oeis.org

10, 170, 2730, 43690, 699050, 11184810, 178956970, 2863311530, 45812984490, 733007751850, 11728124029610, 187649984473770, 3002399751580330, 48038396025285290, 768614336404564650, 12297829382473034410, 196765270119568550570, 3148244321913096809130
Offset: 1

Views

Author

Eliora Ben-Gurion, Sep 08 2019

Keywords

Comments

In any base b > 10, we may express ten as a digit by using the letter A.

Examples

			a(10) = 733007751850_10 = AAAAAAAAAA_16.
		

Crossrefs

Programs

  • Mathematica
    10Accumulate[16^Range[0, 31]] (* Alonso del Arte, Sep 17 2019 *)
    LinearRecurrence[{17,-16},{10,170},20] (* Harvey P. Dale, Apr 02 2023 *)
  • PARI
    a(n)={10*(16^n-1)/15} \\ Andrew Howroyd, Sep 08 2019
    
  • PARI
    Vec(10*x / ((1 - x)*(1 - 16*x)) + O(x^20)) \\ Colin Barker, Sep 16 2019
  • Python
    a = 10
    while a:
        a = a*16+10
        print(a)
    
  • Python
    def a(n): return int("A"*n, 16)
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Jan 17 2022
    

Formula

a(n) = Sum_{i=0..n} 10*16^(i).
a(n) = A131865(n-1)*10.
a(n) = 10*(16^n-1)/15. - Andrew Howroyd, Sep 08 2019
From Colin Barker, Sep 16 2019: (Start)
G.f.: 10*x / ((1 - x)*(1 - 16*x)).
a(n) = 17*a(n-1) - 16*a(n-2) for n>2.
(End)
E.g.f.: (2/3)*exp(x)*(-1 + exp(15*x)). - Stefano Spezia, Sep 17 2019