A325911 Screaming numbers in base 16: numbers whose hexadecimal representation is AAAAAAA...
10, 170, 2730, 43690, 699050, 11184810, 178956970, 2863311530, 45812984490, 733007751850, 11728124029610, 187649984473770, 3002399751580330, 48038396025285290, 768614336404564650, 12297829382473034410, 196765270119568550570, 3148244321913096809130
Offset: 1
Examples
a(10) = 733007751850_10 = AAAAAAAAAA_16.
Links
- Colin Barker, Table of n, a(n) for n = 1..800
- Eric Weisstein's World of Mathematics, Hexadecimal
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Programs
-
Mathematica
10Accumulate[16^Range[0, 31]] (* Alonso del Arte, Sep 17 2019 *) LinearRecurrence[{17,-16},{10,170},20] (* Harvey P. Dale, Apr 02 2023 *)
-
PARI
a(n)={10*(16^n-1)/15} \\ Andrew Howroyd, Sep 08 2019
-
PARI
Vec(10*x / ((1 - x)*(1 - 16*x)) + O(x^20)) \\ Colin Barker, Sep 16 2019
-
Python
a = 10 while a: a = a*16+10 print(a)
-
Python
def a(n): return int("A"*n, 16) print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Jan 17 2022
Formula
a(n) = Sum_{i=0..n} 10*16^(i).
a(n) = A131865(n-1)*10.
a(n) = 10*(16^n-1)/15. - Andrew Howroyd, Sep 08 2019
From Colin Barker, Sep 16 2019: (Start)
G.f.: 10*x / ((1 - x)*(1 - 16*x)).
a(n) = 17*a(n-1) - 16*a(n-2) for n>2.
(End)
E.g.f.: (2/3)*exp(x)*(-1 + exp(15*x)). - Stefano Spezia, Sep 17 2019
Comments