A325924 Number of Motzkin excursions of length n with an odd number of humps and an even number of peaks.
0, 0, 0, 1, 3, 7, 15, 34, 78, 191, 493, 1324, 3626, 10032, 27808, 77045, 213273, 590475, 1637117, 4550836, 12692866, 35532414, 99830094, 281412535, 795601139, 2254966896, 6405076658, 18227600051, 51960277037, 148352016215, 424186720927, 1214602291322
Offset: 0
Keywords
Examples
For n = 5 the a(5) = 7 paths are UHHHD, UHHDH, HUHHD, HHUHD, HUHDH, UHDHH, UUHDD. In all these paths, 0 peaks and 1 hump. For n = 0..6, we have only paths with 0 peaks and 1 hump. For n=7, we have a(n)=34. Among them, 31 paths with 0 peaks and 1 hump, and 3 walks with 2 peaks and 3 humps: UDUDUHD, UDUHDUD, UHDUDUD.
Links
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
Crossrefs
Cf. A325923.
Programs
-
Maple
b:= proc(x, y, t, p, h) option remember; `if`(y>x, 0, `if`(x=0, `if`(p+1=h, 1, 0), `if`(y>0, b(x-1, y-1, 0, irem(p+ `if`(t=1, 1, 0), 2), irem(h+`if`(t=2, 1, 0), 2)), 0)+ b(x-1, y, `if`(t>0, 2, 0), p, h)+b(x-1, y+1, 1, p, h))) end: a:= n-> b(n, 0$4): seq(a(n), n=0..35); # Alois P. Heinz, Jul 04 2019
-
Mathematica
CoefficientList[Series[-(4 x^3 + Sqrt[(1 - 2 x - 3 x^2)(1 -x)^2] + Sqrt[(1 - x - 4 x^3) (1 - x)^3] - Sqrt[(1 + x^2) (1 - 4 x + 5 x^2)] - Sqrt[(1 - 2 x) (1 - 2 x - x^2) (1 - x^2 + 2 x^3)]) / (8 x^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Jul 09 2019 *)
Formula
G.f.: -( 4*t^3 + sqrt((1-2*t-3*t^2)*(1-t)^2) + sqrt((1-t-4*t^3)*(1-t)^3) - sqrt((1+t^2)*(1-4*t+5*t^2)) - sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t)).
a(n) ~ 3^(n + 3/2) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 09 2019
Comments