A326025 Number of maximal subsets of {1..n} containing no sums or products of distinct elements.
1, 1, 2, 2, 2, 4, 5, 10, 13, 20, 28, 40, 54, 82, 120, 172, 244, 347, 471, 651, 874, 1198, 1635, 2210, 2867, 3895, 5234, 6889, 9019, 11919, 15629, 20460, 26254, 33827, 43881, 56367, 71841, 91834, 117695, 148503, 188039, 311442, 390859, 488327, 610685, 759665
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 maximal subsets: {1} {1} {1} {1} {1} {1} {1} {1} {2} {2,3} {2,3,4} {2,3,4} {2,3,4} {2,3,4} {2,3,4} {2,4,5} {2,4,5} {2,3,7} {2,4,5} {3,4,5} {2,5,6} {2,4,5} {2,4,7} {3,4,5,6} {2,4,7} {2,5,6} {2,5,6} {2,5,8} {2,6,7} {2,6,7} {3,4,5,6} {2,3,7,8} {3,5,6,7} {3,4,5,6} {4,5,6,7} {3,4,6,8} {3,5,6,7} {3,6,7,8} {4,5,6,7,8}
Links
- Andrew Howroyd, PARI Program
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Subsets[#,{2,n}],Times@@@Subsets[#,{2,n}]]]=={}&]]],{n,0,10}]
-
PARI
\\ See link for program file. for(n=0, 25, print1(A326025(n), ", ")) \\ Andrew Howroyd, Aug 29 2019
Extensions
a(16)-a(40) from Andrew Howroyd, Aug 29 2019
a(41)-a(45) from Jinyuan Wang, Oct 03 2020