cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326118 a(n) is the largest number of squares of unit area connected only at corners and without holes that can be inscribed in an n X n square.

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 14, 21, 24, 29, 36, 45, 50, 57, 66, 77, 84, 93, 104, 117, 126, 137, 150, 165, 176, 189, 204, 221, 234, 249, 266, 285, 300, 317, 336, 357, 374, 393, 414, 437, 456, 477, 500, 525, 546, 569, 594, 621, 644, 669, 696, 725, 750, 777, 806, 837, 864, 893
Offset: 0

Views

Author

Stefano Spezia, Sep 10 2019

Keywords

Comments

a(n) is equal to h_4(n) as defined in A309038.
a(n) is the maximum size of an induced subtree in the graph of the black squares of an n X n checkerboard, where edges connect diagonally adjacent squares. - Andrew Howroyd, Sep 10 2019

Examples

			Illustrations for n = 1..7:
     __              __              __    __
    |__|            |__|__          |__|__|__|
                       |__|          __|__|__
                                    |__|  |__|
    a(1) = 1        a(2) = 2         a(3) = 5
     __    __                  __    __
    |__|__|__|                |__|__|__|
     __|__|__                  __|__|__    __
    |__|  |__|__              |__|  |__|__|__|
             |__|                    __|__|__
                                    |__|  |__|
        a(4) = 6                  a(5) = 9
     __    __    __      __    __    __    __
    |__|__|__|  |__|__  |__|__|__|  |__|__|__|
     __|__|__    __|__|  __|__|__    __|__|__
    |__|  |__|__|__|    |__|  |__|__|__|  |__|
     __    __|__|__      __    __|__|__    __
    |__|__|__|  |__|__  |__|__|__|  |__|__|__|
       |__|        |__|  __|__|__    __|__|__
                        |__|  |__|  |__|  |__|
       a(6) = 14              a(7) = 21
		

Crossrefs

Cf. A000290, A309038, A338329 (1st differences).

Programs

  • Magma
    I:=[0, 1, 2, 5, 6, 9, 14, 21, 24]; [n le 9 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..58]];
    
  • Mathematica
    Join[{0,1,2},Table[(1/8)*(-29+12*n+2*n^2-3(-1)^n-12*Sin[n*Pi/2]),{n,3,57}]]
  • PARI
    concat([0], Vec(x*(-1-2*x^2+2*x^3-x^4-2*x^5+2*x^7)/((-1+x)^3*(1+x)*(1+x^2))+O(x^58)))

Formula

O.g.f.: x*(1 + 2*x^2 - 2*x^3 + x^4 + 2*x^5 - 2*x^7)/((1 - x)^3*(1 + x)*(1 + x^2)).
E.g.f.: -3*exp(-x)/8 + (2 + x)^2 + exp(x)/8*(-29 + 2*x*(7 + x)) - 3*sin(x)/2.
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 8.
a(n) = (1/8)*(-29 + 12*n + 2*n^2 - 3*(-1)^n - 12*sin(n*Pi/2)) for n > 2, a(0) = 0, a(1) = 1, a(2) = 2.
Limit_{n->oo} a(n)/A000290(n) = 1/4.