cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A326205 Number of n-vertex labeled simple graphs not containing a Hamiltonian path.

Original entry on oeis.org

1, 1, 1, 4, 30, 391, 9400, 398140, 30500696, 4161339596, 1058339281896, 515295969951016
Offset: 0

Views

Author

Gus Wiseman, Jun 14 2019

Keywords

Comments

A path is Hamiltonian if it passes through every vertex exactly once.

Crossrefs

The unlabeled case is A283420.
The case for digraphs is A326213 (without loops) or A326216 (with loops).
Simple graphs with a Hamiltonian path are A326206.
Simple graphs without a Hamiltonian cycle are A326207.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],FindHamiltonianPath[Graph[Range[n],#]]=={}&]],{n,0,4}] (* Mathematica 10.2+ *)

Formula

A006125(n) = a(n) + A326206(n).

Extensions

a(7)-a(11) added from formula by Falk Hüffner, Jun 21 2019

A326213 Number of labeled n-vertex digraphs (with loops) not containing a (directed) Hamiltonian path.

Original entry on oeis.org

1, 2, 4, 128, 12352, 3826272, 3775441536
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A path is Hamiltonian if it passes through every vertex exactly once.

Crossrefs

The unlabeled case is A326224.
The case without loops is A326216.
Digraphs containing a Hamiltonian path are A326214.
Digraphs not containing a Hamiltonian cycle are A326220.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,0,3}] (* Mathematica 10.2+ *)

Formula

A002416(n) = a(n) + A326214(n).

Extensions

a(5)-a(6) from Bert Dobbelaere, Jun 11 2024

A326217 Number of labeled n-vertex digraphs (without loops) containing a Hamiltonian path.

Original entry on oeis.org

0, 0, 3, 48, 3324, 929005, 1014750550, 4305572108670
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Examples

			The a(3) = 48 edge-sets:
  {12,23}  {12,13,21}  {12,13,21,23}  {12,13,21,23,31}  {12,13,21,23,31,32}
  {12,31}  {12,13,23}  {12,13,21,31}  {12,13,21,23,32}
  {13,21}  {12,13,31}  {12,13,21,32}  {12,13,21,31,32}
  {13,32}  {12,13,32}  {12,13,23,31}  {12,13,23,31,32}
  {21,32}  {12,21,23}  {12,13,23,32}  {12,21,23,31,32}
  {23,31}  {12,21,31}  {12,13,31,32}  {13,21,23,31,32}
           {12,21,32}  {12,21,23,31}
           {12,23,31}  {12,21,23,32}
           {12,23,32}  {12,21,31,32}
           {12,31,32}  {12,23,31,32}
           {13,21,23}  {13,21,23,31}
           {13,21,31}  {13,21,23,32}
           {13,21,32}  {13,21,31,32}
           {13,23,31}  {13,23,31,32}
           {13,23,32}  {21,23,31,32}
           {13,31,32}
           {21,23,31}
           {21,23,32}
           {21,31,32}
           {23,31,32}
		

Crossrefs

The undirected case is A326206.
The unlabeled undirected case is A057864.
The case with loops is A326214.
Unlabeled digraphs with a Hamiltonian path are A326221.
Digraphs (without loops) not containing a Hamiltonian path are A326216.
Digraphs (without loops) containing a Hamiltonian cycle are A326219.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,4}] (* Mathematica 10.2+ *)

Formula

A053763(n) = a(n) + A326216(n).

Extensions

a(5)-a(7) from Bert Dobbelaere, Feb 21 2023

A326218 Number of non-Hamiltonian labeled n-vertex digraphs (without loops).

Original entry on oeis.org

1, 0, 3, 49, 2902
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			The a(3) = 49 edge-sets:
  {}  {12}  {12,13}  {12,13,21}  {12,13,21,23}
      {13}  {12,21}  {12,13,23}  {12,13,21,31}
      {21}  {12,23}  {12,13,31}  {12,13,23,32}
      {23}  {12,31}  {12,13,32}  {12,13,31,32}
      {31}  {12,32}  {12,21,23}  {12,21,23,32}
      {32}  {13,21}  {12,21,31}  {12,21,31,32}
            {13,23}  {12,21,32}  {13,21,23,31}
            {13,31}  {12,23,32}  {13,23,31,32}
            {13,32}  {12,31,32}  {21,23,31,32}
            {21,23}  {13,21,23}
            {21,31}  {13,21,31}
            {21,32}  {13,23,31}
            {23,31}  {13,23,32}
            {23,32}  {13,31,32}
            {31,32}  {21,23,31}
                     {21,23,32}
                     {21,31,32}
                     {23,31,32}
		

Crossrefs

The unlabeled case is A326222.
The undirected case is A326207.
The case with loops is A326220.
Digraphs (without loops) containing a Hamiltonian cycle are A326219.
Digraphs (without loops) not containing a Hamiltonian path are A326216.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 2896 which is incorrect *)

Formula

A053763(n) = a(n) + A326219(n).

A326222 Number of non-Hamiltonian unlabeled n-vertex digraphs (without loops).

Original entry on oeis.org

1, 0, 2, 12, 157, 5883, 696803, 255954536
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Crossrefs

The labeled case is A326218 (without loops) or A326220 (with loops).
The undirected case (without loops) is A246446.
The case with loops is A326223.
Hamiltonian unlabeled digraphs are A326225 (without loops) or A003216 (with loops).

Formula

a(n) = A000273(n) - A326225(n). - Pontus von Brömssen, Mar 17 2024

Extensions

a(5)-a(7) (using A000273 and A326225) from Pontus von Brömssen, Mar 17 2024

A326207 Number of non-Hamiltonian labeled simple graphs with n vertices.

Original entry on oeis.org

1, 0, 2, 7, 54, 806, 22690, 1200396, 116759344, 20965139168, 6954959632776, 4363203307789888
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			The a(3) = 7 edge sets:
  {}
  {12}
  {13}
  {23}
  {12,13}
  {12,23}
  {13,23}
		

Crossrefs

The unlabeled version is A246446.
The directed version is A326220 (with loops) or A326216 (without loops).
Simple graphs with a Hamiltonian cycle are A326208.
Simple graphs without a Hamiltonian path are A326205.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],FindHamiltonianCycle[Graph[Range[n],#]]=={}&]],{n,0,4}] (* Mathematica 8.0+ *)

Formula

A006125(n) = a(n) + A326208(n).

Extensions

a(7)-a(11) from formula by Falk Hüffner, Jun 21 2019
Showing 1-6 of 6 results.