cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326305 Dirichlet g.f.: zeta(s-1) * (1 - 2^(-s)) / zeta(s).

Original entry on oeis.org

1, 0, 2, 1, 4, 0, 6, 2, 6, 0, 10, 2, 12, 0, 8, 4, 16, 0, 18, 4, 12, 0, 22, 4, 20, 0, 18, 6, 28, 0, 30, 8, 20, 0, 24, 6, 36, 0, 24, 8, 40, 0, 42, 10, 24, 0, 46, 8, 42, 0, 32, 12, 52, 0, 40, 12, 36, 0, 58, 8, 60, 0, 36, 16, 48, 0, 66, 16, 44, 0, 70, 12, 72, 0, 40
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 17 2019

Keywords

Comments

Moebius transform of A026741.
Dirichlet convolution of A002131 with Dirichlet inverse of A000005.
Dirichlet convolution of A000027 with Dirichlet inverse of A001511.

Crossrefs

Programs

  • Magma
    [IsOdd(n) select EulerPhi(n) else EulerPhi(n)-EulerPhi(n div 2) : n in [1..80]]; // Marius A. Burtea, Oct 17 2019
  • Mathematica
    Table[Sum[MoebiusMu[n/d] Numerator[d/2], {d, Divisors[n]}], {n, 1, 75}]
    a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - EulerPhi[n/2]]; Table[a[n], {n, 1, 75}]
    f[2, e_] := If[e == 1, 0, 2^(e - 2)]; f[p_, e_] := (p - 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)

Formula

a(n) = phi(n) if n odd, phi(n) - phi(n/2) if n even, where phi = A000010.
a(n) = Sum_{d|n} mu(n/d) * A026741(d).
a(n) = Sum_{d|n} A007427(n/d) * A002131(d).
a(n) = Sum_{d|n} A092673(n/d) * d.
a(p) = p - 1, where p is odd prime.
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A299069.
Sum_{k=1..n} a(k) ~ 9*n^2 / (4*Pi^2). - Vaclav Kotesovec, Oct 26 2019
Multiplicative with a(2^e) = 0 if e = 1 and 2^(e-2) otherwise, and a(p^e) = (p-1)*p^(e-1) for odd primes p. - Amiram Eldar, Nov 30 2020