cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326321 Sum of the n-th powers of multinomials M(n; mu), where mu ranges over all compositions of n.

Original entry on oeis.org

1, 1, 5, 271, 395793, 28076306251, 150414812114874563, 86530666539373619904011413, 7177587537701279221012034803727966465, 110824376322428312270365608303690048162629868273811, 399431453468560513224979712848478555015392084082614167438553312275
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2019

Keywords

Examples

			a(2) = M(2; 2)^2 + M(2; 1,1)^2 = 1 + 4 = 5.
		

Crossrefs

Main diagonal of A326322.
Cf. A215910.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-i, k)/i!^k, i=1..n))
        end:
    a:= n-> n!^n*b(n$2):
    seq(a(n), n=0..12);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(binomial(n, j)^k*b(j, k), j=0..n-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..10);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==0, 1, Sum[Binomial[n, j]^k b[j, k], {j, 0, n-1}]];
    a[n_] := b[n, n];
    a /@ Range[0, 10] (* Jean-François Alcover, Dec 03 2020, after 2nd Maple program *)

Formula

From Vaclav Kotesovec, Sep 14 2019: (Start)
a(n) ~ (n!)^n.
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12). (End)
a(n) = (n!)^n * [x^n] 1 / (1 - Sum_{k>=1} x^k / (k!)^n). - Ilya Gutkovskiy, Jul 11 2020