cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326394 Expansion of Sum_{k>=1} x^k * (1 + x^(2*k)) / (1 - x^(3*k)).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 2, 2, 3, 2, 1, 5, 2, 2, 3, 3, 1, 5, 2, 3, 4, 2, 1, 6, 2, 2, 4, 4, 1, 6, 2, 3, 3, 2, 2, 8, 2, 2, 4, 4, 1, 6, 2, 3, 5, 2, 1, 8, 3, 3, 3, 4, 1, 7, 2, 4, 4, 2, 1, 9, 2, 2, 6, 4, 2, 6, 2, 3, 3, 4, 1, 10, 2, 2, 5, 4, 2, 6, 2, 5, 5, 2, 1, 10, 2, 2, 3, 4, 1, 10, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Comments

Number of divisors of n that are not of the form 3*k + 2.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^k (1 + x^(2 k))/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, 1 &, !MemberQ[{2}, Mod[#, 3]] &], {n, 1, 90}]
  • PARI
    a(n) = {numdiv(n) - sumdiv(n, d, d%3==2)} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A000005(n) - A001822(n).
Sum_{k=1..n} a(k) ~ 2*n*log(n)/3 + c*n, where c = (5*gamma-2)/3 - gamma(2,3) = (5*A001620-2)/3 - A256843 = 0.222152... . - Amiram Eldar, Jan 14 2024