cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A082051 Sum of divisors of n that are not of the form 3k+2.

Original entry on oeis.org

1, 1, 4, 5, 1, 10, 8, 5, 13, 11, 1, 26, 14, 8, 19, 21, 1, 37, 20, 15, 32, 23, 1, 50, 26, 14, 40, 40, 1, 65, 32, 21, 37, 35, 8, 89, 38, 20, 56, 55, 1, 80, 44, 27, 73, 47, 1, 114, 57, 36, 55, 70, 1, 118, 56, 40, 80, 59, 1, 141, 62, 32, 104, 85, 14, 131, 68, 39, 73, 88, 1, 185
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 2) / 3]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%3!=2,d))","))
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, (3*n-2)*x^(3*n-2)/(1-x^(3*n-2)) + (3*n)*x^(3*n)/(1-x^(3*n)) );
    v = Vec(gf)
    \\ Joerg Arndt, May 17 2013

Formula

a(A003627(n)) = 1.
G.f.: Sum_{k>=1} x^k*(1 + 3*x^(2*k) + 2*x^(3*k))/(1 - x^(3*k))^2. - Ilya Gutkovskiy, Sep 12 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Jan 06 2024

A326395 Expansion of Sum_{k>=1} x^(2*k) * (1 + x^k) / (1 - x^(3*k)).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 0, 2, 2, 2, 1, 4, 0, 2, 3, 2, 1, 5, 0, 3, 2, 2, 1, 6, 1, 2, 3, 2, 1, 6, 0, 3, 3, 2, 2, 7, 0, 2, 2, 4, 1, 6, 0, 3, 5, 2, 1, 7, 0, 3, 3, 2, 1, 7, 2, 4, 2, 2, 1, 9, 0, 2, 4, 3, 2, 6, 0, 3, 3, 4, 1, 10, 0, 2, 4, 2, 2, 6, 0, 5, 4, 2, 1, 8, 2, 2, 3, 4, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Comments

Number of divisors of n that are not of the form 3*k + 1.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) .. a(N)
    S:= series(add(x^(2*k)*(1+x^k)/(1-x^(3*k)),k=1..N/2),x,N+1):
    seq(coeff(S,x,i),i=1..N); # Robert Israel, Aug 27 2020
  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^(2 k) (1 + x^k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, 1 &, !MemberQ[{1}, Mod[#, 3]] &], {n, 1, 90}]
  • PARI
    a(n) = {numdiv(n) - sumdiv(n, d, d%3==1)} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A000005(n) - A001817(n).
Sum_{k=1..n} a(k) ~ 2*n*log(n)/3 + c*n, where c = (5*gamma-2)/3 - gamma(1,3) = (5*A001620-2)/3 - A256425 = -0.382447... . - Amiram Eldar, Jan 14 2024
Showing 1-2 of 2 results.