cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082050 Sum of divisors of n that are not of the form 3k+1.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 0, 10, 12, 7, 11, 23, 0, 16, 23, 10, 17, 38, 0, 27, 24, 13, 23, 55, 5, 28, 39, 16, 29, 61, 0, 42, 47, 19, 40, 86, 0, 40, 42, 35, 41, 88, 0, 57, 77, 25, 47, 103, 0, 57, 71, 28, 53, 119, 16, 80, 60, 31, 59, 153, 0, 64, 96, 42, 70, 121, 0, 87, 95, 56, 71, 190
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:=Total[Select[Divisors[n],!IntegerQ[(#-1)/3]&]]; Array[sd,80] (* Harvey P. Dale, May 04 2011 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%3!=1,d))","))
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, (3*n-1)*x^(3*n-1)/(1-x^(3*n-1)) + (3*n)*x^(3*n)/(1-x^(3*n)) );
    v = Vec(gf);  concat([0],v)
    \\ Joerg Arndt, May 17 2013

Formula

a(A004611(n)) = 0.
G.f.: Sum_{k>=1} x^(2*k)*(2+3*x^k+x^(3*k))/(1-x^(3*k))^2. - Vladeta Jovovic, Apr 11 2006
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Jan 06 2024

A374058 Expansion of Product_{k>=1} (1 - x^(3*k-2)) * (1 - x^(3*k)).

Original entry on oeis.org

1, -1, 0, -1, 0, 1, -1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, -1, 0, 0, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, 1, 1, -1, 0, 0, -1, 2, 0, -1, 1, 0, -1, 2, -2, 0, 1, -1, 0, 1, -1, 0, 1, -2, 1, 1, -2, 1, 0, -2, 2, 0, -2, 2, -1, 0, 2, -1, -1, 1, -1, -1, 3, -2, 0, 2, -2, 1, 2, -3, 1, 1, -2, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(3 k - 2)) (1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Plus @@ Select[Divisors[k], Mod[#, 3] != 2 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A082051(k) * a(n-k).
a(0) = 1; a(n) = -Sum_{k=1..n} A035360(k) * a(n-k).
a(n) = Sum_{k=0..n} A010815(k) * A035386(n-k).

A326394 Expansion of Sum_{k>=1} x^k * (1 + x^(2*k)) / (1 - x^(3*k)).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 2, 2, 3, 2, 1, 5, 2, 2, 3, 3, 1, 5, 2, 3, 4, 2, 1, 6, 2, 2, 4, 4, 1, 6, 2, 3, 3, 2, 2, 8, 2, 2, 4, 4, 1, 6, 2, 3, 5, 2, 1, 8, 3, 3, 3, 4, 1, 7, 2, 4, 4, 2, 1, 9, 2, 2, 6, 4, 2, 6, 2, 3, 3, 4, 1, 10, 2, 2, 5, 4, 2, 6, 2, 5, 5, 2, 1, 10, 2, 2, 3, 4, 1, 10, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Comments

Number of divisors of n that are not of the form 3*k + 2.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^k (1 + x^(2 k))/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, 1 &, !MemberQ[{2}, Mod[#, 3]] &], {n, 1, 90}]
  • PARI
    a(n) = {numdiv(n) - sumdiv(n, d, d%3==2)} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A000005(n) - A001822(n).
Sum_{k=1..n} a(k) ~ 2*n*log(n)/3 + c*n, where c = (5*gamma-2)/3 - gamma(2,3) = (5*A001620-2)/3 - A256843 = 0.222152... . - Amiram Eldar, Jan 14 2024
Showing 1-3 of 3 results.