cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326476 A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^n, for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 8, 3, 1, 0, 1, 32, 21, 4, 1, 0, 1, 128, 183, 40, 5, 1, 0, 1, 512, 1641, 544, 65, 6, 1, 0, 1, 2048, 14763, 8320, 1205, 96, 7, 1, 0, 1, 8192, 132861, 131584, 26465, 2256, 133, 8, 1, 0, 1, 32768, 1195743, 2099200, 628805, 64896, 3787, 176, 9, 1
Offset: 0

Views

Author

Peter Luschny, Jul 08 2019

Keywords

Examples

			Array starts:
  [0] 1, 0,   0,    0,      0,        0,          0,            0, ... A000007
  [1] 1, 1,   1,    1,      1,        1,          1,            1, ... A000012
  [2] 1, 2,   8,   32,    128,      512,       2048,         8192, ... A081294
  [3] 1, 3,  21,  183,   1641,    14763,     132861,      1195743, ... A054879
  [4] 1, 4,  40,  544,   8320,   131584,    2099200,     33562624, ... A092812
  [5] 1, 5,  65, 1205,  26465,   628805,   15424865,    382964405, ... A121822
  [6] 1, 6,  96, 2256,  64896,  2086656,   71172096,   2499219456, ...
  [7] 1, 7, 133, 3787, 134953,  5501167,  243147373,  11266376947, ...
  [8] 1, 8, 176, 5888, 250496, 12397568,  676591616,  39316226048, ...
  [9] 1, 9, 225, 8649, 427905, 24943689, 1624354785, 114066126729, ...
        A000567,
Seen as a triangle:
  1;
  0, 1;
  0, 1,    1;
  0, 1,    2,      1;
  0, 1,    8,      3,      1;
  0, 1,   32,     21,      4,     1;
  0, 1,  128,    183,     40,     5,    1;
  0, 1,  512,   1641,    544,    65,    6,   1;
  0, 1, 2048,  14763,   8320,  1205,   96,   7, 1;
  0, 1, 8192, 132861, 131584, 26465, 2256, 133, 8, 1;
		

Crossrefs

Rows n=0..5 give A000007, A000012, A081294, A054879, A092812, A121822.
Columns include: A000567.
Main diagonal gives A381459.
Variant: A286899.
Cf. A326474 (m=3, p>=0), A326475 (m=3, p<=0), A326327 (m=2, p<=0), this sequence (m=2, p>=0).

Programs

  • Mathematica
    (* The function MLPower is defined in A326327. *)
    For[n = 0, n < 8, n++, Print[MLPower[2, n, 8]]]
  • PARI
    a(n, k) = (2*k)!*polcoef(cosh(x+x*O(x^(2*k)))^n, 2*k); \\ Seiichi Manyama, May 11 2025
  • Sage
    # uses[MLPower from A326327]
    for n in (0..6): print(MLPower(2, n, 9))
    

Formula

A(n,k) = (2*k)! * [x^(2*k)] cosh(x)^n. - Seiichi Manyama, May 11 2025