A326490 Number of subsets of {1..n} containing no differences or quotients of pairs of distinct elements.
1, 2, 3, 5, 7, 12, 18, 31, 46, 72, 102, 172, 259, 428, 607, 989, 1329, 2142, 3117, 4953, 6956, 11032, 15321, 23979, 33380, 48699, 66849, 104853, 144712, 220758, 304133, 461580, 636556, 973843, 1316513, 1958828, 2585433, 3882843, 5237093, 7884277, 10555739, 15729293
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 18 subsets: {} {} {} {} {} {} {} {1} {1} {1} {1} {1} {1} {2} {2} {2} {2} {2} {3} {3} {3} {3} {2,3} {4} {4} {4} {2,3} {5} {5} {3,4} {2,3} {6} {2,5} {2,3} {3,4} {2,5} {3,5} {2,6} {4,5} {3,4} {3,4,5} {3,5} {4,5} {4,6} {5,6} {2,5,6} {3,4,5} {4,5,6}
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..90
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]],{n,0,10}]
-
PARI
a(n)={ my(recurse(k, b)= if(k > n, 1, my(t = self()(k + 1, b)); for(i=1, k\2, if(bittest(b,i) && (bittest(b,k-i) || (!(k%i) && bittest(b,k/i))), return(t))); t += self()(k + 1, b + (1<
Andrew Howroyd, Aug 25 2019
Formula
For n > 0, a(n) = A326495(n) + 1.
Extensions
a(19)-a(41) from Andrew Howroyd, Aug 25 2019