cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326490 Number of subsets of {1..n} containing no differences or quotients of pairs of distinct elements.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 18, 31, 46, 72, 102, 172, 259, 428, 607, 989, 1329, 2142, 3117, 4953, 6956, 11032, 15321, 23979, 33380, 48699, 66849, 104853, 144712, 220758, 304133, 461580, 636556, 973843, 1316513, 1958828, 2585433, 3882843, 5237093, 7884277, 10555739, 15729293
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}   {}   {}     {}     {}       {}
      {1}  {1}  {1}    {1}    {1}      {1}
           {2}  {2}    {2}    {2}      {2}
                {3}    {3}    {3}      {3}
                {2,3}  {4}    {4}      {4}
                       {2,3}  {5}      {5}
                       {3,4}  {2,3}    {6}
                              {2,5}    {2,3}
                              {3,4}    {2,5}
                              {3,5}    {2,6}
                              {4,5}    {3,4}
                              {3,4,5}  {3,5}
                                       {4,5}
                                       {4,6}
                                       {5,6}
                                       {2,5,6}
                                       {3,4,5}
                                       {4,5,6}
		

Crossrefs

Subsets without difference are A007865.
Maximal subsets without differences or quotients are A326491.
Subsets without quotients are A327591.
Subsets with differences and quotients are A326494.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]],{n,0,10}]
  • PARI
    a(n)={
       my(recurse(k, b)=
        if(k > n, 1,
          my(t = self()(k + 1, b));
          for(i=1, k\2, if(bittest(b,i) && (bittest(b,k-i) || (!(k%i) && bittest(b,k/i))), return(t)));
          t += self()(k + 1, b + (1<Andrew Howroyd, Aug 25 2019

Formula

For n > 0, a(n) = A326495(n) + 1.

Extensions

a(19)-a(41) from Andrew Howroyd, Aug 25 2019