cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326495 Number of subsets of {1..n} containing no sums or products of pairs of elements.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 30, 45, 71, 101, 171, 258, 427, 606, 988, 1328, 2141, 3116, 4952, 6955, 11031, 15320, 23978, 33379, 48698, 66848, 104852, 144711, 220757, 304132, 461579, 636555, 973842, 1316512, 1958827, 2585432, 3882842, 5237092, 7884276, 10555738, 15729292
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

The pairs are not required to be strict.

Examples

			The a(1) = 1 through a(6) = 17 subsets:
  {}  {}   {}     {}     {}       {}
      {2}  {2}    {2}    {2}      {2}
           {3}    {3}    {3}      {3}
           {2,3}  {4}    {4}      {4}
                  {2,3}  {5}      {5}
                  {3,4}  {2,3}    {6}
                         {2,5}    {2,3}
                         {3,4}    {2,5}
                         {3,5}    {2,6}
                         {4,5}    {3,4}
                         {3,4,5}  {3,5}
                                  {4,5}
                                  {4,6}
                                  {5,6}
                                  {2,5,6}
                                  {3,4,5}
                                  {4,5,6}
		

Crossrefs

Subsets without sums are A007865.
Subsets without products are A326489.
Subsets without differences or quotients are A326490.
Maximal subsets without sums or products are A326497.
Subsets with sums (and products) are A326083.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]],{n,0,10}]

Formula

For n > 0, a(n) = A326490(n) - 1.

Extensions

a(19)-a(41) from Andrew Howroyd, Aug 25 2019

A326491 Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 10 subsets:
  {1}  {1}  {1}    {1}    {1}      {1}      {1}        {1}        {1}
       {2}  {2,3}  {2,3}  {2,3}    {2,3}    {2,3,7}    {2,5,6}    {2,6,7}
                   {3,4}  {2,5}    {2,5,6}  {2,5,6}    {2,5,8}    {3,4,5}
                          {3,4,5}  {3,4,5}  {2,6,7}    {2,6,7}    {3,5,7}
                                   {4,5,6}  {3,4,5}    {3,4,5}    {2,3,7,8}
                                            {3,5,7}    {3,5,7}    {2,5,6,9}
                                            {4,5,6,7}  {2,3,7,8}  {2,5,8,9}
                                                       {4,5,6,7}  {4,5,6,7}
                                                       {5,6,7,8}  {4,6,7,9}
                                                                  {5,6,7,8,9}
		

Crossrefs

Subsets without differences or quotients are A326490.
Subsets with differences and quotients are A326494.
Maximal subsets without differences are A121269
Maximal subsets without quotients are A326492.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]

Formula

a(n) = A326497(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019

Extensions

a(16)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Mar 04 2025

A327591 Number of subsets of {1..n} containing no quotients of pairs of distinct elements.

Original entry on oeis.org

1, 2, 3, 5, 7, 13, 23, 45, 89, 137, 253, 505, 897, 1793, 3393, 6353, 9721, 19441, 35665, 71329, 129953, 247233, 477665, 955329, 1700417, 2657281, 5184001, 10368001, 19407361, 38814721, 68868353, 137736705, 260693505, 505830401, 999641601, 1882820609, 2807196673
Offset: 0

Views

Author

Peter Kagey, Sep 17 2019

Keywords

Examples

			The a(0) = 1 through a(5) = 13 subsets:
  {}  {}   {}   {}     {}     {}
      {1}  {1}  {1}    {1}    {1}
           {2}  {2}    {2}    {2}
                {3}    {3}    {3}
                {2,3}  {4}    {4}
                       {2,3}  {5}
                       {3,4}  {2,3}
                              {2,5}
                              {3,4}
                              {3,5}
                              {4,5}
                              {2,3,5}
                              {3,4,5}
		

Crossrefs

Maximal subsets without quotients are A326492.
Subsets with quotients are A326023.
Subsets without differences or quotients are A326490.
Subsets without products are A326489.

Formula

A326489(n) + 1 for n > 0.

A326492 Number of maximal subsets of {1..n} containing no quotients of pairs of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 7, 7, 10, 10, 16, 18, 31, 31, 47, 47, 52, 62, 104, 104, 130, 159, 283, 283, 323, 323, 554, 554, 616, 690, 1248, 1366, 1871, 1871, 3567, 3759, 5245, 5245, 8678, 8678, 9808, 12148, 23352, 23352, 27470, 31695, 45719, 47187, 54595, 54595, 95383, 108199
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(0) = 1 through a(9) = 5 subsets:
  {}  {1}  {1}  {1}   {1}   {1}    {1}     {1}      {1}       {1}
           {2}  {23}  {23}  {235}  {235}   {2357}   {23578}   {23578}
                      {34}  {345}  {256}   {2567}   {25678}   {256789}
                                   {3456}  {34567}  {345678}  {345678}
                                                              {456789}
		

Crossrefs

Subsets with quotients are A326023.
Subsets with quotients > 1 are A326079.
Subsets without quotients are A327591.
Maximal subsets without differences or quotients are A326491.
Maximal subsets without quotients (or products) are A326496.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]=={}&]]],{n,0,10}]

Formula

a(n) = A326496(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019

A326494 Number of subsets of {1..n} containing all differences and quotients of pairs of distinct elements.

Original entry on oeis.org

1, 2, 4, 6, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

The only allowed sets are the empty set, any singleton, any initial interval of positive integers and {2,4}. This can be shown by induction. - Andrew Howroyd, Aug 25 2019

Examples

			The a(0) = 1 through a(6) = 13 subsets:
  {}  {}   {}     {}       {}         {}           {}
      {1}  {1}    {1}      {1}        {1}          {1}
           {2}    {2}      {2}        {2}          {2}
           {1,2}  {3}      {3}        {3}          {3}
                  {1,2}    {4}        {4}          {4}
                  {1,2,3}  {1,2}      {5}          {5}
                           {2,4}      {1,2}        {6}
                           {1,2,3}    {2,4}        {1,2}
                           {1,2,3,4}  {1,2,3}      {2,4}
                                      {1,2,3,4}    {1,2,3}
                                      {1,2,3,4,5}  {1,2,3,4}
                                                   {1,2,3,4,5}
                                                   {1,2,3,4,5,6}
		

Crossrefs

Subsets with difference are A054519.
Subsets with quotients are A326023.
Subsets with quotients > 1 are A326079.
Subsets without differences or quotients are A326490.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Union[Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&],Subtract@@@Select[Tuples[#,2],Greater@@#&]]]&]],{n,0,10}]

Formula

a(n) = 2*n + 1 = A005408(n) for n > 3. - Andrew Howroyd, Aug 25 2019

Extensions

Terms a(20) and beyond from Andrew Howroyd, Aug 25 2019
Showing 1-5 of 5 results.