cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326489 Number of product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 22, 44, 88, 136, 252, 504, 896, 1792, 3392, 6352, 9720, 19440, 35664, 71328, 129952, 247232, 477664, 955328, 1700416, 2657280, 5184000, 10368000, 19407360, 38814720, 68868352, 137736704, 260693504, 505830400, 999641600, 1882820608, 2807196672
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is product-free if it contains no product of two (not necessarily distinct) elements.

Examples

			The a(0) = 1 through a(6) = 22 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {6}
                             {2,5}    {2,3}
                             {3,4}    {2,5}
                             {3,5}    {2,6}
                             {4,5}    {3,4}
                             {2,3,5}  {3,5}
                             {3,4,5}  {3,6}
                                      {4,5}
                                      {4,6}
                                      {5,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,4,6}
                                      {3,5,6}
                                      {4,5,6}
                                      {3,4,5,6}
		

Crossrefs

Product-closed subsets are A326076.
Subsets containing no products are A326114.
Subsets containing no products of distinct elements are A326117.
Subsets containing no quotients are A327591.
Maximal product-free subsets are A326496.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]],{n,10}]

Extensions

a(21)-a(36) from Andrew Howroyd, Aug 25 2019
a(0)=1 prepended to data, example and b-file by Peter Kagey, Sep 18 2019

A326496 Number of maximal product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 9, 9, 15, 17, 30, 30, 46, 46, 51, 61, 103, 103, 129, 158, 282, 282, 322, 322, 553, 553, 615, 689, 1247, 1365, 1870, 1870, 3566, 3758, 5244, 5244, 8677, 8677, 9807, 12147, 23351, 23351, 27469, 31694, 45718, 47186, 54594, 54594, 95382, 108198
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is product-free if it contains no product of two (not necessarily distinct) elements.
Also the number of maximal quotient-free subsets of {1..n}.

Examples

			The a(2) = 1 through a(10) = 6 subsets (A = 10):
  {2}  {23}  {23}  {235}  {235}   {2357}   {23578}   {23578}   {23578}
             {34}  {345}  {256}   {2567}   {25678}   {256789}  {2378A}
                          {3456}  {34567}  {345678}  {345678}  {256789}
                                                     {456789}  {26789A}
                                                               {345678A}
                                                               {456789A}
		

Crossrefs

Product-free subsets are A326489.
Subsets without products of distinct elements are A326117.
Maximal sum-free subsets are A121269.
Maximal sum-free and product-free subsets are A326497.
Maximal subsets without products of distinct elements are A325710.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 30, print1(A326496(n), ", ")) \\ Andrew Howroyd, Aug 30 2019

Extensions

a(18)-a(55) from Andrew Howroyd, Aug 30 2019

A326491 Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 10 subsets:
  {1}  {1}  {1}    {1}    {1}      {1}      {1}        {1}        {1}
       {2}  {2,3}  {2,3}  {2,3}    {2,3}    {2,3,7}    {2,5,6}    {2,6,7}
                   {3,4}  {2,5}    {2,5,6}  {2,5,6}    {2,5,8}    {3,4,5}
                          {3,4,5}  {3,4,5}  {2,6,7}    {2,6,7}    {3,5,7}
                                   {4,5,6}  {3,4,5}    {3,4,5}    {2,3,7,8}
                                            {3,5,7}    {3,5,7}    {2,5,6,9}
                                            {4,5,6,7}  {2,3,7,8}  {2,5,8,9}
                                                       {4,5,6,7}  {4,5,6,7}
                                                       {5,6,7,8}  {4,6,7,9}
                                                                  {5,6,7,8,9}
		

Crossrefs

Subsets without differences or quotients are A326490.
Subsets with differences and quotients are A326494.
Maximal subsets without differences are A121269
Maximal subsets without quotients are A326492.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]

Formula

a(n) = A326497(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019

Extensions

a(16)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Mar 04 2025

A326490 Number of subsets of {1..n} containing no differences or quotients of pairs of distinct elements.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 18, 31, 46, 72, 102, 172, 259, 428, 607, 989, 1329, 2142, 3117, 4953, 6956, 11032, 15321, 23979, 33380, 48699, 66849, 104853, 144712, 220758, 304133, 461580, 636556, 973843, 1316513, 1958828, 2585433, 3882843, 5237093, 7884277, 10555739, 15729293
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}   {}   {}     {}     {}       {}
      {1}  {1}  {1}    {1}    {1}      {1}
           {2}  {2}    {2}    {2}      {2}
                {3}    {3}    {3}      {3}
                {2,3}  {4}    {4}      {4}
                       {2,3}  {5}      {5}
                       {3,4}  {2,3}    {6}
                              {2,5}    {2,3}
                              {3,4}    {2,5}
                              {3,5}    {2,6}
                              {4,5}    {3,4}
                              {3,4,5}  {3,5}
                                       {4,5}
                                       {4,6}
                                       {5,6}
                                       {2,5,6}
                                       {3,4,5}
                                       {4,5,6}
		

Crossrefs

Subsets without difference are A007865.
Maximal subsets without differences or quotients are A326491.
Subsets without quotients are A327591.
Subsets with differences and quotients are A326494.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]],{n,0,10}]
  • PARI
    a(n)={
       my(recurse(k, b)=
        if(k > n, 1,
          my(t = self()(k + 1, b));
          for(i=1, k\2, if(bittest(b,i) && (bittest(b,k-i) || (!(k%i) && bittest(b,k/i))), return(t)));
          t += self()(k + 1, b + (1<Andrew Howroyd, Aug 25 2019

Formula

For n > 0, a(n) = A326495(n) + 1.

Extensions

a(19)-a(41) from Andrew Howroyd, Aug 25 2019

A326492 Number of maximal subsets of {1..n} containing no quotients of pairs of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 7, 7, 10, 10, 16, 18, 31, 31, 47, 47, 52, 62, 104, 104, 130, 159, 283, 283, 323, 323, 554, 554, 616, 690, 1248, 1366, 1871, 1871, 3567, 3759, 5245, 5245, 8678, 8678, 9808, 12148, 23352, 23352, 27470, 31695, 45719, 47187, 54595, 54595, 95383, 108199
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(0) = 1 through a(9) = 5 subsets:
  {}  {1}  {1}  {1}   {1}   {1}    {1}     {1}      {1}       {1}
           {2}  {23}  {23}  {235}  {235}   {2357}   {23578}   {23578}
                      {34}  {345}  {256}   {2567}   {25678}   {256789}
                                   {3456}  {34567}  {345678}  {345678}
                                                              {456789}
		

Crossrefs

Subsets with quotients are A326023.
Subsets with quotients > 1 are A326079.
Subsets without quotients are A327591.
Maximal subsets without differences or quotients are A326491.
Maximal subsets without quotients (or products) are A326496.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]=={}&]]],{n,0,10}]

Formula

a(n) = A326496(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019
Showing 1-5 of 5 results.