A343652
Number of maximal pairwise coprime sets of divisors of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1
The a(n) sets for n = 12, 30, 36, 60, 120:
{1,6} {1,30} {1,6} {1,30} {1,30}
{1,12} {1,2,15} {1,12} {1,60} {1,60}
{1,2,3} {1,3,10} {1,18} {1,2,15} {1,120}
{1,3,4} {1,5,6} {1,36} {1,3,10} {1,2,15}
{1,2,3,5} {1,2,3} {1,3,20} {1,3,10}
{1,2,9} {1,4,15} {1,3,20}
{1,3,4} {1,5,6} {1,3,40}
{1,4,9} {1,5,12} {1,4,15}
{1,2,3,5} {1,5,6}
{1,3,4,5} {1,5,12}
{1,5,24}
{1,8,15}
{1,2,3,5}
{1,3,4,5}
{1,3,5,8}
The non-maximal version counting empty sets and singletons is
A225520.
The non-maximal version with no 1's is
A343653.
The non-maximal version is
A343655.
The version for subsets of {1..n} is
A343659.
The case without 1's or singletons is
A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A048691 counts pairwise coprime ordered pairs of divisors.
A048785 counts pairwise coprime ordered triples of divisors.
A100565 counts pairwise coprime unordered triples of divisors.
A305713 counts pairwise coprime non-singleton strict partitions.
A324837 counts minimal subsets of {1...n} with least common multiple n.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.
Cf.
A005361,
A007359,
A051026,
A062319,
A067824,
A074206,
A146291,
A285572,
A325859,
A326359,
A326496,
A326675,
A343654.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Divisors[n]],CoprimeQ@@#&]]],{n,100}]
A326489
Number of product-free subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 4, 6, 12, 22, 44, 88, 136, 252, 504, 896, 1792, 3392, 6352, 9720, 19440, 35664, 71328, 129952, 247232, 477664, 955328, 1700416, 2657280, 5184000, 10368000, 19407360, 38814720, 68868352, 137736704, 260693504, 505830400, 999641600, 1882820608, 2807196672
Offset: 0
The a(0) = 1 through a(6) = 22 subsets:
{} {} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {2,6}
{4,5} {3,4}
{2,3,5} {3,5}
{3,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,3,5}
{2,5,6}
{3,4,5}
{3,4,6}
{3,5,6}
{4,5,6}
{3,4,5,6}
Product-closed subsets are
A326076.
Subsets containing no products are
A326114.
Subsets containing no products of distinct elements are
A326117.
Subsets containing no quotients are
A327591.
Maximal product-free subsets are
A326496.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]],{n,10}]
a(0)=1 prepended to data, example and b-file by
Peter Kagey, Sep 18 2019
A121269
Number of maximal sum-free subsets of {1,2,...,n}.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 6, 8, 13, 17, 23, 29, 37, 51, 66, 86, 118, 158, 201, 265, 359, 471, 598, 797, 1043, 1378, 1765, 2311, 3064, 3970, 5017, 6537, 8547, 11020, 14007, 18026, 23404, 30026, 37989, 48945, 62759, 80256, 101070, 129193, 164835, 209279, 262693, 334127
Offset: 0
N. Hindman (nhindman(AT)aol.com), Aug 23 2006
a(5)=5 because the maximal sum-free subsets of {1,2,3,4,5} are {1,4}, {2,3}, {2,5}, {1,3,5} and {3,4,5}
From _Gus Wiseman_, Jul 10 2019: (Start)
The a(1) = 1 through a(8) = 13 subsets:
{1} {1} {1,3} {1,3} {1,4} {2,3} {1,4,6} {1,3,8}
{2} {2,3} {1,4} {2,3} {1,3,5} {1,4,7} {1,4,6}
{2,3} {2,5} {1,4,6} {2,3,7} {1,4,7}
{3,4} {1,3,5} {2,5,6} {2,5,6} {1,5,8}
{3,4,5} {3,4,5} {2,6,7} {1,6,8}
{4,5,6} {3,4,5} {2,5,6}
{1,3,5,7} {2,5,8}
{4,5,6,7} {2,6,7}
{3,4,5}
{1,3,5,7}
{2,3,7,8}
{4,5,6,7}
{5,6,7,8}
(End)
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..80
- P. J. Cameron and P. Erdős, On the number of integers with various properties, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79.
- N. Hindman and H. Jordan, Measures of sum-free intersecting families, New York J. Math. 13 (2007), 97-106.
Maximal product-free subsets are
A326496.
Maximal sum-free and product-free subsets are
A326497.
Maximal subsets without sums of distinct elements are
A326498.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Plus@@@Tuples[#,2]]=={}&]]],{n,0,10}] (* Gus Wiseman, Jul 10 2019 *)
A326497
Number of maximal sum-free and product-free subsets of {1..n}.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 15, 21, 26, 38, 51, 69, 89, 119, 149, 197, 261, 356, 447, 601, 781, 1003, 1293, 1714, 2228, 2931, 3697, 4843, 6258, 8187, 10273, 13445, 16894, 21953, 27469, 35842, 45410, 58948, 73939, 95199, 120593, 154510, 192995, 247966, 312642
Offset: 0
The a(2) = 1 through a(10) = 15 subsets (A = 10):
{2} {23} {23} {23} {23} {237} {256} {267} {23A}
{34} {25} {256} {256} {258} {345} {345}
{345} {345} {267} {267} {357} {34A}
{456} {345} {345} {2378} {357}
{357} {357} {2569} {38A}
{4567} {2378} {2589} {2378}
{4567} {4567} {2569}
{5678} {4679} {2589}
{56789} {267A}
{269A}
{4567}
{4679}
{479A}
{56789}
{6789A}
Sum-free and product-free subsets are
A326495.
Maximal sum-free subsets are
A121269.
Maximal product-free subsets are
A326496.
Subsets with sums (and products) are
A326083.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]]],{n,0,10}]
-
\\ See link for program file.
for(n=0, 37, print1(A326497(n), ", ")) \\ Andrew Howroyd, Aug 30 2019
A326491
Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0
The a(1) = 1 through a(9) = 10 subsets:
{1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {2,3} {2,3} {2,3} {2,3} {2,3,7} {2,5,6} {2,6,7}
{3,4} {2,5} {2,5,6} {2,5,6} {2,5,8} {3,4,5}
{3,4,5} {3,4,5} {2,6,7} {2,6,7} {3,5,7}
{4,5,6} {3,4,5} {3,4,5} {2,3,7,8}
{3,5,7} {3,5,7} {2,5,6,9}
{4,5,6,7} {2,3,7,8} {2,5,8,9}
{4,5,6,7} {4,5,6,7}
{5,6,7,8} {4,6,7,9}
{5,6,7,8,9}
Subsets without differences or quotients are
A326490.
Subsets with differences and quotients are
A326494.
Maximal subsets without differences are
A121269
Maximal subsets without quotients are
A326492.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]
A343659
Number of maximal pairwise coprime subsets of {1..n}.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 7, 9, 9, 10, 10, 12, 16, 19, 19, 20, 20, 22, 28, 32, 32, 33, 54, 61, 77, 84, 84, 85, 85, 94, 112, 123, 158, 161, 161, 176, 206, 212, 212, 214, 214, 229, 241, 260, 260, 263, 417, 428, 490, 521, 521, 526, 655, 674, 764, 818, 818, 820, 820, 874, 918, 975, 1182, 1189, 1189
Offset: 1
The a(1) = 1 through a(9) = 7 subsets:
{1} {12} {123} {123} {1235} {156} {1567} {1567} {1567}
{134} {1345} {1235} {12357} {12357} {12357}
{1345} {13457} {13457} {12579}
{13578} {13457}
{13578}
{14579}
{15789}
The non-maximal version counting empty sets and singletons is
A084422.
The non-maximal version counting singletons is
A187106.
The version for indivisibility instead of coprimality is
A326077.
The version for sets of divisors is
A343652.
The version for sets of divisors > 1 is
A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
Cf.
A007360,
A067824,
A087087,
A225520,
A324837,
A325683,
A325859,
A326358,
A326496,
A326675,
A333227,
A343653,
A343655.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Range[n]],CoprimeQ@@#&]]],{n,15}]
A325710
Number of maximal subsets of {1..n} containing no products of distinct elements.
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 24, 28, 32, 32, 62, 62, 92, 102, 184, 184, 254, 254, 474, 506, 686, 686, 1172, 1172, 1792, 1906, 3568, 3794, 5326, 5326, 10282, 10618, 14822, 14822, 25564, 25564, 35304, 39432, 76888, 76888, 100574, 100574, 197870, 201622, 282014
Offset: 0
The a(1) = 1 through a(9) = 6 maximal subsets:
{1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {23} {234} {2345} {2345} {23457} {23457} {234579}
{2456} {24567} {23578} {235789}
{3456} {34567} {24567} {245679}
{25678} {256789}
{345678} {3456789}
Subsets without products of distinct elements are
A326117.
Maximal product-free subsets are
A326496.
Maximal subsets without sums of distinct elements are
A326498.
Maximal subsets without quotients are
A326492.
Maximal subsets without sums or products of distinct elements are
A326025.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Subsets[#,{2,n}]]=={}&]]],{n,0,10}]
-
\\ See link for program file.
for(n=0, 30, print1(A325710(n), ", ")) \\ Andrew Howroyd, Aug 29 2019
A327591
Number of subsets of {1..n} containing no quotients of pairs of distinct elements.
Original entry on oeis.org
1, 2, 3, 5, 7, 13, 23, 45, 89, 137, 253, 505, 897, 1793, 3393, 6353, 9721, 19441, 35665, 71329, 129953, 247233, 477665, 955329, 1700417, 2657281, 5184001, 10368001, 19407361, 38814721, 68868353, 137736705, 260693505, 505830401, 999641601, 1882820609, 2807196673
Offset: 0
The a(0) = 1 through a(5) = 13 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{3,4} {2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{2,3,5}
{3,4,5}
Maximal subsets without quotients are
A326492.
Subsets with quotients are
A326023.
Subsets without differences or quotients are
A326490.
Subsets without products are
A326489.
A326492
Number of maximal subsets of {1..n} containing no quotients of pairs of distinct elements.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 7, 7, 10, 10, 16, 18, 31, 31, 47, 47, 52, 62, 104, 104, 130, 159, 283, 283, 323, 323, 554, 554, 616, 690, 1248, 1366, 1871, 1871, 3567, 3759, 5245, 5245, 8678, 8678, 9808, 12148, 23352, 23352, 27470, 31695, 45719, 47187, 54595, 54595, 95383, 108199
Offset: 0
The a(0) = 1 through a(9) = 5 subsets:
{} {1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {23} {23} {235} {235} {2357} {23578} {23578}
{34} {345} {256} {2567} {25678} {256789}
{3456} {34567} {345678} {345678}
{456789}
Subsets with quotients are
A326023.
Subsets with quotients > 1 are
A326079.
Subsets without quotients are
A327591.
Maximal subsets without differences or quotients are
A326491.
Maximal subsets without quotients (or products) are
A326496.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]=={}&]]],{n,0,10}]
A343660
Number of maximal pairwise coprime sets of at least two divisors > 1 of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 4, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 8, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 6, 0, 1, 2, 2, 1, 4, 0, 4, 0, 1, 0, 8, 1, 1, 1
Offset: 1
The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
{2,3} {2,3} {2,3} {5,6} {2,3} {5,6} {2,3} {2,3}
{3,4} {3,4} {2,15} {2,9} {2,15} {2,9} {3,4}
{3,8} {3,10} {3,4} {3,10} {3,4} {3,8}
{2,3,5} {4,9} {3,20} {3,8} {3,16}
{4,15} {4,9} {3,32}
{5,12} {8,9}
{2,3,5}
{3,4,5}
The case with singletons is (also)
A343652.
The non-maximal version is
A343653.
The non-maximal version with 1's is
A343655.
The version for subsets of {2..n} is
A343659 (for n > 2).
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A066620 counts pairwise coprime 3-sets of divisors.
A100565 counts pairwise coprime unordered triples of divisors.
Cf.
A005361,
A007359,
A007360,
A067824,
A074206,
A225520,
A276187,
A320426,
A325683,
A326077,
A326359,
A326496,
A337485,
A343654.
-
fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
Table[Length[fasmax[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]]],{n,100}]
Showing 1-10 of 11 results.
Comments